情绪从何而来?预测情绪刺激图

Kuan-Chuan Peng, Amir Sadovnik, Andrew C. Gallagher, Tsuhan Chen
{"title":"情绪从何而来?预测情绪刺激图","authors":"Kuan-Chuan Peng, Amir Sadovnik, Andrew C. Gallagher, Tsuhan Chen","doi":"10.1109/ICIP.2016.7532430","DOIUrl":null,"url":null,"abstract":"Which parts of an image evoke emotions in an observer? To answer this question, we introduce a novel problem in computer vision - predicting an Emotion Stimuli Map (ESM), which describes pixel-wise contribution to evoked emotions. Building a new image database, EmotionROI, as a benchmark for predicting the ESM, we find that the regions selected by saliency and objectness detection do not correctly predict the image regions which evoke emotion. Although objects represent important regions for evoking emotion, parts of the background are also important. Based on this fact, we propose using fully convolutional networks for predicting the ESM. Both qualitative and quantitative experimental results confirm that our method can predict the regions which evoke emotion better than both saliency and objectness detection.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"569 1","pages":"614-618"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Where do emotions come from? Predicting the Emotion Stimuli Map\",\"authors\":\"Kuan-Chuan Peng, Amir Sadovnik, Andrew C. Gallagher, Tsuhan Chen\",\"doi\":\"10.1109/ICIP.2016.7532430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Which parts of an image evoke emotions in an observer? To answer this question, we introduce a novel problem in computer vision - predicting an Emotion Stimuli Map (ESM), which describes pixel-wise contribution to evoked emotions. Building a new image database, EmotionROI, as a benchmark for predicting the ESM, we find that the regions selected by saliency and objectness detection do not correctly predict the image regions which evoke emotion. Although objects represent important regions for evoking emotion, parts of the background are also important. Based on this fact, we propose using fully convolutional networks for predicting the ESM. Both qualitative and quantitative experimental results confirm that our method can predict the regions which evoke emotion better than both saliency and objectness detection.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"569 1\",\"pages\":\"614-618\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

图像的哪些部分能唤起观察者的情感?为了回答这个问题,我们在计算机视觉中引入了一个新的问题——预测情绪刺激图(ESM),它描述了像素对诱发情绪的贡献。建立EmotionROI图像数据库作为预测ESM的基准,我们发现显著性和物体检测选择的区域不能正确预测引起情感的图像区域。虽然物体代表了唤起情感的重要区域,但背景的某些部分也很重要。基于这一事实,我们建议使用全卷积网络来预测ESM。定性和定量实验结果都证实了我们的方法比显著性和客观检测更能预测引起情绪的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Where do emotions come from? Predicting the Emotion Stimuli Map
Which parts of an image evoke emotions in an observer? To answer this question, we introduce a novel problem in computer vision - predicting an Emotion Stimuli Map (ESM), which describes pixel-wise contribution to evoked emotions. Building a new image database, EmotionROI, as a benchmark for predicting the ESM, we find that the regions selected by saliency and objectness detection do not correctly predict the image regions which evoke emotion. Although objects represent important regions for evoking emotion, parts of the background are also important. Based on this fact, we propose using fully convolutional networks for predicting the ESM. Both qualitative and quantitative experimental results confirm that our method can predict the regions which evoke emotion better than both saliency and objectness detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信