大k的可满足性猜想的证明

Jian Ding, A. Sly, Nike Sun
{"title":"大k的可满足性猜想的证明","authors":"Jian Ding, A. Sly, Nike Sun","doi":"10.1145/2746539.2746619","DOIUrl":null,"url":null,"abstract":"We establish the satisfiability threshold for random k-SAT for all k ≥ k0. That is, there exists a limiting density αs(k) such that a random k-SAT formula of clause density α is with high probability satisfiable for α < αs, and unsatisfiable for α > αs. The satisfiability threshold αs is given explicitly by the one-step replica symmetry breaking (1SRB) prediction from statistical physics. We believe that our methods may apply to a range of random constraint satisfaction problems in the 1RSB class.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":"{\"title\":\"Proof of the Satisfiability Conjecture for Large k\",\"authors\":\"Jian Ding, A. Sly, Nike Sun\",\"doi\":\"10.1145/2746539.2746619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the satisfiability threshold for random k-SAT for all k ≥ k0. That is, there exists a limiting density αs(k) such that a random k-SAT formula of clause density α is with high probability satisfiable for α < αs, and unsatisfiable for α > αs. The satisfiability threshold αs is given explicitly by the one-step replica symmetry breaking (1SRB) prediction from statistical physics. We believe that our methods may apply to a range of random constraint satisfaction problems in the 1RSB class.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"176\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176

摘要

我们建立了所有k≥k0的随机k- sat的可满足阈值。即存在一个极限密度αs(k),使得子句密度α的随机k- sat公式在α < αs时大概率可满足,在α > αs时大概率不满足。通过统计物理的一步复制对称破缺(1SRB)预测,明确给出了可满足阈值αs。我们相信我们的方法可以应用于1RSB类中的一系列随机约束满足问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of the Satisfiability Conjecture for Large k
We establish the satisfiability threshold for random k-SAT for all k ≥ k0. That is, there exists a limiting density αs(k) such that a random k-SAT formula of clause density α is with high probability satisfiable for α < αs, and unsatisfiable for α > αs. The satisfiability threshold αs is given explicitly by the one-step replica symmetry breaking (1SRB) prediction from statistical physics. We believe that our methods may apply to a range of random constraint satisfaction problems in the 1RSB class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信