一维和多维稀疏插值的尺度和移位范式

A. Cuyt, Wen-shin Lee
{"title":"一维和多维稀疏插值的尺度和移位范式","authors":"A. Cuyt, Wen-shin Lee","doi":"10.1145/3313880.3313887","DOIUrl":null,"url":null,"abstract":"Sparse interpolation from at least 2n uniformly spaced interpolation points tj can be traced back to the exponential fitting method\n [MATH HERE]\n of de Prony from the 18-th century [5]. Almost 200 years later this basic problem is also reformulated as a generalized eigenvalue problem [8]. We generalize (1) to sparse interpolation problems of the form\n [MATH HERE]\n and some multivariate formulations thereof, from corresponding regular interpolation point patterns. Concurrently we introduce the wavelet inspired paradigm of dilation and translation for the analysis (2) of these complex-valued structured univariate or multivariate samples. The new method is the result of a search on how to solve ambiguity problems in exponential analysis, such as aliasing which arises from too coarsely sampled data, or collisions which may occur when handling projected data.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"19 1","pages":"75-77"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scale and shift paradigm for sparse interpolation in one and more dimensions\",\"authors\":\"A. Cuyt, Wen-shin Lee\",\"doi\":\"10.1145/3313880.3313887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse interpolation from at least 2n uniformly spaced interpolation points tj can be traced back to the exponential fitting method\\n [MATH HERE]\\n of de Prony from the 18-th century [5]. Almost 200 years later this basic problem is also reformulated as a generalized eigenvalue problem [8]. We generalize (1) to sparse interpolation problems of the form\\n [MATH HERE]\\n and some multivariate formulations thereof, from corresponding regular interpolation point patterns. Concurrently we introduce the wavelet inspired paradigm of dilation and translation for the analysis (2) of these complex-valued structured univariate or multivariate samples. The new method is the result of a search on how to solve ambiguity problems in exponential analysis, such as aliasing which arises from too coarsely sampled data, or collisions which may occur when handling projected data.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"19 1\",\"pages\":\"75-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3313880.3313887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3313880.3313887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

至少2n个均匀间隔插值点tj的稀疏插值可以追溯到18世纪de proony的指数拟合方法[MATH HERE][5]。近200年后,这个基本问题也被重新表述为广义特征值问题[8]。我们将(1)推广到形式为[MATH HERE]的稀疏插值问题及其多变量公式,从对应的正则插值点模式。同时,我们引入了小波启发的扩展和平移范式,用于分析(2)这些复杂值的结构化单变量或多变量样本。新方法是研究如何解决指数分析中的歧义问题的结果,例如由于采样数据过于粗糙而产生的混叠,或者在处理投影数据时可能发生的碰撞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scale and shift paradigm for sparse interpolation in one and more dimensions
Sparse interpolation from at least 2n uniformly spaced interpolation points tj can be traced back to the exponential fitting method [MATH HERE] of de Prony from the 18-th century [5]. Almost 200 years later this basic problem is also reformulated as a generalized eigenvalue problem [8]. We generalize (1) to sparse interpolation problems of the form [MATH HERE] and some multivariate formulations thereof, from corresponding regular interpolation point patterns. Concurrently we introduce the wavelet inspired paradigm of dilation and translation for the analysis (2) of these complex-valued structured univariate or multivariate samples. The new method is the result of a search on how to solve ambiguity problems in exponential analysis, such as aliasing which arises from too coarsely sampled data, or collisions which may occur when handling projected data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信