废硅铝锂玻璃陶瓷去除废水中重金属元素的基础研究

Min-Seok Go, J. Wang
{"title":"废硅铝锂玻璃陶瓷去除废水中重金属元素的基础研究","authors":"Min-Seok Go, J. Wang","doi":"10.7844/kirr.2022.31.4.49","DOIUrl":null,"url":null,"abstract":"In this study, the heavy metal ions (of Pb, Cd, Cr, and Hg) in wastewater were removed using a spent Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass previously used as an induction top plate material. Changes in the removal efficiency of heavy metals according to different reaction parameters, such as the amount of zeolite used as a heavy-metal adsorbent, adsorption time, initial concentration of the heavy metals, and pH of the initial solution, were investigated. As the amount of zeolite added increased, the heavy-metal removal efficiency also increased. Adsorption time had a considerable influence on adsorption characteristics, and the removal efficiency of all heavy metals increased with increasing adsorption time. In the case of Cd, the removal efficiency was greatly improved depending on the adsorption time. The initial concentration of the heavy-metal solution did not affect the removal efficiency; however, the initial pH of the heavy-metal solution affected the removal efficiency. More specifically, the removal efficiency of Cd increased while that of Pb and Cr decreased with increasing pH. The adsorption characteristics of Hg were not significantly affected by pH.","PeriodicalId":20967,"journal":{"name":"Resources Recycling","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Basic Study for Removal of Heavy Metal Elements from Wastewater using Spent Lithium-Aluminum-Silicate(LAS) Glass Ceramics\",\"authors\":\"Min-Seok Go, J. Wang\",\"doi\":\"10.7844/kirr.2022.31.4.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the heavy metal ions (of Pb, Cd, Cr, and Hg) in wastewater were removed using a spent Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass previously used as an induction top plate material. Changes in the removal efficiency of heavy metals according to different reaction parameters, such as the amount of zeolite used as a heavy-metal adsorbent, adsorption time, initial concentration of the heavy metals, and pH of the initial solution, were investigated. As the amount of zeolite added increased, the heavy-metal removal efficiency also increased. Adsorption time had a considerable influence on adsorption characteristics, and the removal efficiency of all heavy metals increased with increasing adsorption time. In the case of Cd, the removal efficiency was greatly improved depending on the adsorption time. The initial concentration of the heavy-metal solution did not affect the removal efficiency; however, the initial pH of the heavy-metal solution affected the removal efficiency. More specifically, the removal efficiency of Cd increased while that of Pb and Cr decreased with increasing pH. The adsorption characteristics of Hg were not significantly affected by pH.\",\"PeriodicalId\":20967,\"journal\":{\"name\":\"Resources Recycling\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Recycling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7844/kirr.2022.31.4.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7844/kirr.2022.31.4.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,废水中的重金属离子(铅、镉、铬和汞)是用废旧的Li 2o - al 2o3 - sio2基结晶玻璃去除的,该玻璃之前被用作感应顶板材料。考察了沸石作为重金属吸附剂的用量、吸附时间、重金属初始浓度和初始溶液pH等不同反应参数对重金属去除率的影响。随着沸石添加量的增加,重金属的去除效率也随之提高。吸附时间对吸附特性有较大影响,随着吸附时间的延长,各重金属的去除率均有所提高。在Cd的情况下,随吸附时间的延长,去除率大大提高。重金属溶液的初始浓度对去除率没有影响;而初始pH值对重金属的去除率有较大影响。随着pH的增加,对Cd的去除效率提高,而对Pb和Cr的去除效率降低,对Hg的吸附特性不受pH的显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Basic Study for Removal of Heavy Metal Elements from Wastewater using Spent Lithium-Aluminum-Silicate(LAS) Glass Ceramics
In this study, the heavy metal ions (of Pb, Cd, Cr, and Hg) in wastewater were removed using a spent Li 2 O-Al 2 O 3 -SiO 2 -based crystallized glass previously used as an induction top plate material. Changes in the removal efficiency of heavy metals according to different reaction parameters, such as the amount of zeolite used as a heavy-metal adsorbent, adsorption time, initial concentration of the heavy metals, and pH of the initial solution, were investigated. As the amount of zeolite added increased, the heavy-metal removal efficiency also increased. Adsorption time had a considerable influence on adsorption characteristics, and the removal efficiency of all heavy metals increased with increasing adsorption time. In the case of Cd, the removal efficiency was greatly improved depending on the adsorption time. The initial concentration of the heavy-metal solution did not affect the removal efficiency; however, the initial pH of the heavy-metal solution affected the removal efficiency. More specifically, the removal efficiency of Cd increased while that of Pb and Cr decreased with increasing pH. The adsorption characteristics of Hg were not significantly affected by pH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信