对称算子空间上的厄米算子和等距

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jinghao Huang, F. Sukochev
{"title":"对称算子空间上的厄米算子和等距","authors":"Jinghao Huang, F. Sukochev","doi":"10.4171/jems/1332","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{M}$ be an atomless semifinite von Neumann algebra (or an atomic von Neumann algebra with all atoms having the same trace) acting on a (not necessarily separable) Hilbert space $H$ equipped with a semifinite faithful normal trace $\\tau$. Let $E(\\mathcal{M},\\tau) $ be a symmetric operator space affiliated with $ \\mathcal{M} $, whose norm is order continuous and is not proportional to the Hilbertian norm $\\left\\|\\cdot\\right\\|_2$ on $L_2(\\mathcal{M},\\tau)$. We obtain general description of all bounded hermitian operators on $E(\\mathcal{M},\\tau)$. This is the first time that the description of hermitian operators on asymmetric operator space (even for a noncommutative $L_p$-space) is obtained in the setting of general (non-hyperfinite) von Neumann algebras. As an application, we resolve a long-standing open problem concerning the description of isometries raised in the 1980s, which generalizes and unifies numerous earlier results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermitian operators and isometries on symmetric operator spaces\",\"authors\":\"Jinghao Huang, F. Sukochev\",\"doi\":\"10.4171/jems/1332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{M}$ be an atomless semifinite von Neumann algebra (or an atomic von Neumann algebra with all atoms having the same trace) acting on a (not necessarily separable) Hilbert space $H$ equipped with a semifinite faithful normal trace $\\\\tau$. Let $E(\\\\mathcal{M},\\\\tau) $ be a symmetric operator space affiliated with $ \\\\mathcal{M} $, whose norm is order continuous and is not proportional to the Hilbertian norm $\\\\left\\\\|\\\\cdot\\\\right\\\\|_2$ on $L_2(\\\\mathcal{M},\\\\tau)$. We obtain general description of all bounded hermitian operators on $E(\\\\mathcal{M},\\\\tau)$. This is the first time that the description of hermitian operators on asymmetric operator space (even for a noncommutative $L_p$-space) is obtained in the setting of general (non-hyperfinite) von Neumann algebras. As an application, we resolve a long-standing open problem concerning the description of isometries raised in the 1980s, which generalizes and unifies numerous earlier results.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

设$\mathcal{M}$为一个无原子的半有限冯·诺伊曼代数(或一个所有原子都有相同迹的原子冯·诺伊曼代数)作用于一个(不一定可分离的)希尔伯特空间$H$,该空间具有半有限忠实的正规迹$\tau$。设$E(\mathcal{M},\tau) $为一个隶属于$ \mathcal{M} $的对称算子空间,其范数是阶连续的,与$L_2(\mathcal{M},\tau)$上的希尔伯特范数$\left\|\cdot\right\|_2$不成比例。得到了$E(\mathcal{M},\tau)$上所有有界厄米算子的一般描述。这是第一次在一般(非超有限)冯·诺伊曼代数的情况下,得到非对称算子空间(即使是非交换$L_p$ -空间)上厄米算子的描述。作为一个应用,我们解决了20世纪80年代提出的关于等距描述的长期开放问题,它概括和统一了许多早期的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hermitian operators and isometries on symmetric operator spaces
Let $\mathcal{M}$ be an atomless semifinite von Neumann algebra (or an atomic von Neumann algebra with all atoms having the same trace) acting on a (not necessarily separable) Hilbert space $H$ equipped with a semifinite faithful normal trace $\tau$. Let $E(\mathcal{M},\tau) $ be a symmetric operator space affiliated with $ \mathcal{M} $, whose norm is order continuous and is not proportional to the Hilbertian norm $\left\|\cdot\right\|_2$ on $L_2(\mathcal{M},\tau)$. We obtain general description of all bounded hermitian operators on $E(\mathcal{M},\tau)$. This is the first time that the description of hermitian operators on asymmetric operator space (even for a noncommutative $L_p$-space) is obtained in the setting of general (non-hyperfinite) von Neumann algebras. As an application, we resolve a long-standing open problem concerning the description of isometries raised in the 1980s, which generalizes and unifies numerous earlier results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信