Banach *-代数上Jordan *-导的刻画

IF 0.2 Q4 MATHEMATICS
G. An, Ying Yao
{"title":"Banach *-代数上Jordan *-导的刻画","authors":"G. An, Ying Yao","doi":"10.11648/J.PAMJ.20200905.13","DOIUrl":null,"url":null,"abstract":"Suppose that is a real or complex unital Banach *-algebra, is a unital Banach -bimodule, and G ∈ is a left separating point of . In this paper, we investigate whether the additive mapping δ: → satisfies the condition A,B ∈ , AB = G ⇒ Aδ(B)+δ(A)B*= δ(G) characterize Jordan *-derivations. Initially, we prove that if is a real unital C*-algebra and G = I is the unit element in , then δ (non-necessarily continuous) is a Jordan *-derivation. In addition, we prove that if is a real unital C*-algebra and δ is continuous, then δ is a Jordan *-derivation. Finally, we show that if is a complex factor von Neumann algebra and δ is linear, then δ (non-necessarily continuous) is equal to zero.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterizations of Jordan *-derivations on Banach *-algebras\",\"authors\":\"G. An, Ying Yao\",\"doi\":\"10.11648/J.PAMJ.20200905.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that is a real or complex unital Banach *-algebra, is a unital Banach -bimodule, and G ∈ is a left separating point of . In this paper, we investigate whether the additive mapping δ: → satisfies the condition A,B ∈ , AB = G ⇒ Aδ(B)+δ(A)B*= δ(G) characterize Jordan *-derivations. Initially, we prove that if is a real unital C*-algebra and G = I is the unit element in , then δ (non-necessarily continuous) is a Jordan *-derivation. In addition, we prove that if is a real unital C*-algebra and δ is continuous, then δ is a Jordan *-derivation. Finally, we show that if is a complex factor von Neumann algebra and δ is linear, then δ (non-necessarily continuous) is equal to zero.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.PAMJ.20200905.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20200905.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设是一个实数或复数单Banach *-代数,是一个单Banach -双模,且G∈是的左分离点。本文研究了加性映射δ:→是否满足条件A,B∈,AB = G⇒Aδ(B)+δ(A)B*= δ(G)表征Jordan *-派生。首先,我们证明了它是一个实的单位C*-代数,G = I是其中的单位元素,那么δ(非必然连续)是一个Jordan *-导数。此外,我们证明了它是一个实的单位C*-代数,δ是连续的,那么δ是一个约当*-导数。最后,我们证明了如果是复因式冯·诺依曼代数并且δ是线性的,那么δ(不一定连续)等于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of Jordan *-derivations on Banach *-algebras
Suppose that is a real or complex unital Banach *-algebra, is a unital Banach -bimodule, and G ∈ is a left separating point of . In this paper, we investigate whether the additive mapping δ: → satisfies the condition A,B ∈ , AB = G ⇒ Aδ(B)+δ(A)B*= δ(G) characterize Jordan *-derivations. Initially, we prove that if is a real unital C*-algebra and G = I is the unit element in , then δ (non-necessarily continuous) is a Jordan *-derivation. In addition, we prove that if is a real unital C*-algebra and δ is continuous, then δ is a Jordan *-derivation. Finally, we show that if is a complex factor von Neumann algebra and δ is linear, then δ (non-necessarily continuous) is equal to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信