典型非参数美式期权定价方法的实证检验

Jamie Alcock, D. Auerswald
{"title":"典型非参数美式期权定价方法的实证检验","authors":"Jamie Alcock, D. Auerswald","doi":"10.2139/ssrn.1405842","DOIUrl":null,"url":null,"abstract":"Alcock and Carmichael (2008, The Journal of Futures Markets, 28, 717–748) introduce a nonparametric method for pricing American‐style options, that is derived from the canonical valuation developed by Stutzer (1996, The Journal of Finance, 51, 1633–1652). Although the statistical properties of this nonparametric pricing methodology have been studied in a controlled simulation environment, no study has yet examined the empirical validity of this method. We introduce an extension to this method that incorporates information contained in a small number of observed option prices. We explore the applicability of both the original method and our extension using a large sample of OEX American index options traded on the S&P100 index. Although the Alcock and Carmichael method fails to outperform a traditional implied‐volatility‐based Black–Scholes valuation or a binomial tree approach, our extension generates significantly lower pricing errors and performs comparably well to the implied‐volatility Black–Scholes pricing, in particular for out‐of‐the‐money American put options. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:509–532, 2010","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2009-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Empirical Tests of Canonical Nonparametric American Option Pricing Methods\",\"authors\":\"Jamie Alcock, D. Auerswald\",\"doi\":\"10.2139/ssrn.1405842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alcock and Carmichael (2008, The Journal of Futures Markets, 28, 717–748) introduce a nonparametric method for pricing American‐style options, that is derived from the canonical valuation developed by Stutzer (1996, The Journal of Finance, 51, 1633–1652). Although the statistical properties of this nonparametric pricing methodology have been studied in a controlled simulation environment, no study has yet examined the empirical validity of this method. We introduce an extension to this method that incorporates information contained in a small number of observed option prices. We explore the applicability of both the original method and our extension using a large sample of OEX American index options traded on the S&P100 index. Although the Alcock and Carmichael method fails to outperform a traditional implied‐volatility‐based Black–Scholes valuation or a binomial tree approach, our extension generates significantly lower pricing errors and performs comparably well to the implied‐volatility Black–Scholes pricing, in particular for out‐of‐the‐money American put options. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:509–532, 2010\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1405842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1405842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

Alcock和Carmichael (2008, The Journal of Futures Markets, 28, 717-748)在Stutzer (1996, The Journal of Finance, 51, 1633-1652)的基础上,引入了一种美式期权的非参数定价方法。虽然这种非参数定价方法的统计特性已经在受控的模拟环境中进行了研究,但还没有研究检验了这种方法的经验有效性。我们引入了对该方法的扩展,将少量观察到的期权价格中包含的信息纳入其中。我们使用在标准普尔100指数上交易的OEX美国指数期权的大样本来探索原始方法和我们的扩展的适用性。尽管Alcock和Carmichael方法无法优于传统的基于隐含波动率的Black-Scholes估值或二项树方法,但我们的扩展产生的定价误差明显更低,并且与隐含波动率Black-Scholes定价相比表现相当好,特别是对于非货币的美国看跌期权。©2009 Wiley期刊公司[j] .中国科学d辑,2010
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Tests of Canonical Nonparametric American Option Pricing Methods
Alcock and Carmichael (2008, The Journal of Futures Markets, 28, 717–748) introduce a nonparametric method for pricing American‐style options, that is derived from the canonical valuation developed by Stutzer (1996, The Journal of Finance, 51, 1633–1652). Although the statistical properties of this nonparametric pricing methodology have been studied in a controlled simulation environment, no study has yet examined the empirical validity of this method. We introduce an extension to this method that incorporates information contained in a small number of observed option prices. We explore the applicability of both the original method and our extension using a large sample of OEX American index options traded on the S&P100 index. Although the Alcock and Carmichael method fails to outperform a traditional implied‐volatility‐based Black–Scholes valuation or a binomial tree approach, our extension generates significantly lower pricing errors and performs comparably well to the implied‐volatility Black–Scholes pricing, in particular for out‐of‐the‐money American put options. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:509–532, 2010
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信