关于奇异摄动的时间尺度分解及其应用的评述

Q4 Mathematics
Kliti Kodra, N. Zhong, Z. Gajic
{"title":"关于奇异摄动的时间尺度分解及其应用的评述","authors":"Kliti Kodra, N. Zhong, Z. Gajic","doi":"10.56082/annalsarscimath.2020.1-2.538","DOIUrl":null,"url":null,"abstract":"In this paper, we point out important observations on time-scale decomposition of linear singularly perturbed systems. It has been established in the control literature that the asymptotically stable fast modes of a singularly perturbed system decay rapidly in a boundary layer interval when the perturbation parameter is very small hence the slow subsystem can serve as a good approximation of the original model. We observe that while this is the case in the steady state, it is not true during the transient response for a strictly proper system with highly damped and highly oscillatory modes. Instead, the fast subsystem provides a very good approximation of the original model’s response but with a DC gain offset. We propose a correction to rectify the DC gain offset and illustrate the findings using an islanded microgrid electric power system model.","PeriodicalId":38807,"journal":{"name":"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REMARKS ON TIME-SCALE DECOMPOSITION USING SINGULAR PERTURBATIONS WITH APPLICATIONS\",\"authors\":\"Kliti Kodra, N. Zhong, Z. Gajic\",\"doi\":\"10.56082/annalsarscimath.2020.1-2.538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we point out important observations on time-scale decomposition of linear singularly perturbed systems. It has been established in the control literature that the asymptotically stable fast modes of a singularly perturbed system decay rapidly in a boundary layer interval when the perturbation parameter is very small hence the slow subsystem can serve as a good approximation of the original model. We observe that while this is the case in the steady state, it is not true during the transient response for a strictly proper system with highly damped and highly oscillatory modes. Instead, the fast subsystem provides a very good approximation of the original model’s response but with a DC gain offset. We propose a correction to rectify the DC gain offset and illustrate the findings using an islanded microgrid electric power system model.\",\"PeriodicalId\":38807,\"journal\":{\"name\":\"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56082/annalsarscimath.2020.1-2.538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56082/annalsarscimath.2020.1-2.538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文指出了线性奇摄动系统时尺度分解的重要观察结果。在控制文献中已经证实,当扰动参数很小时,奇摄动系统的渐近稳定快模在边界层区间内衰减迅速,因此慢子系统可以作为原始模型的很好近似。我们观察到,虽然这是在稳态情况下的情况,但在具有高阻尼和高振荡模式的严格适当系统的瞬态响应期间并非如此。相反,快速子系统提供了一个非常好的近似原始模型的响应,但有一个直流增益偏移。我们提出了一种校正方法来校正直流增益偏移,并使用孤岛微电网电力系统模型说明了研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REMARKS ON TIME-SCALE DECOMPOSITION USING SINGULAR PERTURBATIONS WITH APPLICATIONS
In this paper, we point out important observations on time-scale decomposition of linear singularly perturbed systems. It has been established in the control literature that the asymptotically stable fast modes of a singularly perturbed system decay rapidly in a boundary layer interval when the perturbation parameter is very small hence the slow subsystem can serve as a good approximation of the original model. We observe that while this is the case in the steady state, it is not true during the transient response for a strictly proper system with highly damped and highly oscillatory modes. Instead, the fast subsystem provides a very good approximation of the original model’s response but with a DC gain offset. We propose a correction to rectify the DC gain offset and illustrate the findings using an islanded microgrid electric power system model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: The journal Mathematics and Its Applications is part of the Annals of the Academy of Romanian Scientists (ARS), in which several series are published. Although the Academy is almost one century old, due to the historical conditions after WW2 in Eastern Europe, it is just starting with 2006 that the Annals are published. The Editor-in-Chief of the Annals is the President of ARS, Prof. Dr. V. Candea and Academician A.E. Sandulescu (†) is his deputy for this domain. Mathematics and Its Applications invites publication of contributed papers, short notes, survey articles and reviews, with a novel and correct content, in any area of mathematics and its applications. Short notes are published with priority on the recommendation of one of the members of the Editorial Board and should be 3-6 pages long. They may not include proofs, but supplementary materials supporting all the statements are required and will be archivated. The authors are encouraged to publish the extended version of the short note, elsewhere. All received articles will be submitted to a blind peer review process. Mathematics and Its Applications has an Open Access policy: all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. No submission or processing fees are required. Targeted topics include : Ordinary and partial differential equations Optimization, optimal control and design Numerical Analysis and scientific computing Algebraic, topological and differential structures Probability and statistics Algebraic and differential geometry Mathematical modelling in mechanics and engineering sciences Mathematical economy and game theory Mathematical physics and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信