一些尖刺随机矩阵模型的最优信号检测:似然比检验和线性谱统计

Debapratim Banerjee, Zongming Ma
{"title":"一些尖刺随机矩阵模型的最优信号检测:似然比检验和线性谱统计","authors":"Debapratim Banerjee, Zongming Ma","doi":"10.1214/21-aos2150","DOIUrl":null,"url":null,"abstract":"We study signal detection by likelihood ratio tests in a number of spiked random matrix models, including but not limited to Gaussian mixtures and spiked Wishart covariance matrices. We work directly with multi-spiked cases in these models and with flexible priors on signal components that allow dependence across spikes. We derive asymptotic normality for the log-likelihood ratios when the signal-tonoise ratios are below certain bounds. In addition, the log-likelihood ratios can be asymptotically decomposed as weighted sums of a collection of statistics which we call bipartite signed cycles. Based on this decomposition, we show that below the bounds we could always achieve the asymptotically optimal powers of likelihood ratio tests via tests based on linear spectral statistics which have polynomial time complexity.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal signal detection in some spiked random matrix models: Likelihood ratio tests and linear spectral statistics\",\"authors\":\"Debapratim Banerjee, Zongming Ma\",\"doi\":\"10.1214/21-aos2150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study signal detection by likelihood ratio tests in a number of spiked random matrix models, including but not limited to Gaussian mixtures and spiked Wishart covariance matrices. We work directly with multi-spiked cases in these models and with flexible priors on signal components that allow dependence across spikes. We derive asymptotic normality for the log-likelihood ratios when the signal-tonoise ratios are below certain bounds. In addition, the log-likelihood ratios can be asymptotically decomposed as weighted sums of a collection of statistics which we call bipartite signed cycles. Based on this decomposition, we show that below the bounds we could always achieve the asymptotically optimal powers of likelihood ratio tests via tests based on linear spectral statistics which have polynomial time complexity.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aos2150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aos2150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了信号检测的似然比检验在一些尖刺随机矩阵模型,包括但不限于高斯混合和尖刺Wishart协方差矩阵。我们在这些模型中直接处理多尖峰情况,并在信号组件上使用灵活的先验,允许跨尖峰依赖。当信噪比低于某一界限时,我们导出对数似然比的渐近正态性。此外,对数似然比可以渐近分解为一组统计量的加权和,我们称之为二部有符号环。在此基础上,我们证明了在边界以下,我们总是可以通过基于多项式时间复杂度的线性谱统计量的检验获得似然比检验的渐近最优幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal signal detection in some spiked random matrix models: Likelihood ratio tests and linear spectral statistics
We study signal detection by likelihood ratio tests in a number of spiked random matrix models, including but not limited to Gaussian mixtures and spiked Wishart covariance matrices. We work directly with multi-spiked cases in these models and with flexible priors on signal components that allow dependence across spikes. We derive asymptotic normality for the log-likelihood ratios when the signal-tonoise ratios are below certain bounds. In addition, the log-likelihood ratios can be asymptotically decomposed as weighted sums of a collection of statistics which we call bipartite signed cycles. Based on this decomposition, we show that below the bounds we could always achieve the asymptotically optimal powers of likelihood ratio tests via tests based on linear spectral statistics which have polynomial time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信