热等静压羟基磷灰石基复合材料:第2部分。氧化锆纤维和粉末增强

N. Ehsani, C. Sorrell, A. Ruys
{"title":"热等静压羟基磷灰石基复合材料:第2部分。氧化锆纤维和粉末增强","authors":"N. Ehsani, C. Sorrell, A. Ruys","doi":"10.4028/www.scientific.net/JBBTE.15.85","DOIUrl":null,"url":null,"abstract":"The Aim of the Project Was to Enhance the Fracture Toughness of Hydroxyapatite to a Level Comparable to that of Natural Bone for in Vivo Applications. to this Aim, the Effect of Various Parameters, Were Studied. Fully Dense Decomposition-Free Hap Matrix Composite Was Produced Using Hot Isostatic Pressing Technique. A Graphite/stainless Steel Encapsulation System Was Found to Be an Appropriate Method. Glass Encapsulation Was Unsuccessful Technique due to the Excessive Low-Temperature Volatilisation, which Aerated the Glass. Toughness Improvement Was 2.7 Times for PSZ Fibres, and 2.4 Times for PSZ Powder. the Optimal Addition Level of PSZ Fibre and PSZ Powder Was 20 Vol% and ~30 Vol% Respectively. Further, it Was Found that the Hap Decomposition Temperature Was Higher at 100 Mpa (the Hiping Pressure) than for Pressureless Sintering. the Toughening Effect of the Additives Induced Plastic Deformation and Ductile Fracture.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"18 1","pages":"100 - 85"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hydroxyapatite Matrix Composites by Hot Isostatic Pressing: Part 2. Zirconia Fibre and Powder Reinforced\",\"authors\":\"N. Ehsani, C. Sorrell, A. Ruys\",\"doi\":\"10.4028/www.scientific.net/JBBTE.15.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Aim of the Project Was to Enhance the Fracture Toughness of Hydroxyapatite to a Level Comparable to that of Natural Bone for in Vivo Applications. to this Aim, the Effect of Various Parameters, Were Studied. Fully Dense Decomposition-Free Hap Matrix Composite Was Produced Using Hot Isostatic Pressing Technique. A Graphite/stainless Steel Encapsulation System Was Found to Be an Appropriate Method. Glass Encapsulation Was Unsuccessful Technique due to the Excessive Low-Temperature Volatilisation, which Aerated the Glass. Toughness Improvement Was 2.7 Times for PSZ Fibres, and 2.4 Times for PSZ Powder. the Optimal Addition Level of PSZ Fibre and PSZ Powder Was 20 Vol% and ~30 Vol% Respectively. Further, it Was Found that the Hap Decomposition Temperature Was Higher at 100 Mpa (the Hiping Pressure) than for Pressureless Sintering. the Toughening Effect of the Additives Induced Plastic Deformation and Ductile Fracture.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"18 1\",\"pages\":\"100 - 85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/JBBTE.15.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.15.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

该项目的目的是将羟基磷灰石的断裂韧性提高到与天然骨相当的水平,用于体内应用。为此,研究了各种参数的影响。采用热等静压技术制备了全致密无分解Hap基复合材料。发现石墨/不锈钢封装体系是一种合适的方法。由于低温挥发过多,使玻璃曝气,因此玻璃封装技术不成功。PSZ纤维的韧性提高2.7倍,PSZ粉的韧性提高2.4倍。PSZ纤维和PSZ粉的最佳添加量分别为20 Vol%和~30 Vol%。结果表明,在100 Mpa(压平压力)下,合金的分解温度高于无压烧结。添加剂的增韧作用引起塑性变形和韧性断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydroxyapatite Matrix Composites by Hot Isostatic Pressing: Part 2. Zirconia Fibre and Powder Reinforced
The Aim of the Project Was to Enhance the Fracture Toughness of Hydroxyapatite to a Level Comparable to that of Natural Bone for in Vivo Applications. to this Aim, the Effect of Various Parameters, Were Studied. Fully Dense Decomposition-Free Hap Matrix Composite Was Produced Using Hot Isostatic Pressing Technique. A Graphite/stainless Steel Encapsulation System Was Found to Be an Appropriate Method. Glass Encapsulation Was Unsuccessful Technique due to the Excessive Low-Temperature Volatilisation, which Aerated the Glass. Toughness Improvement Was 2.7 Times for PSZ Fibres, and 2.4 Times for PSZ Powder. the Optimal Addition Level of PSZ Fibre and PSZ Powder Was 20 Vol% and ~30 Vol% Respectively. Further, it Was Found that the Hap Decomposition Temperature Was Higher at 100 Mpa (the Hiping Pressure) than for Pressureless Sintering. the Toughening Effect of the Additives Induced Plastic Deformation and Ductile Fracture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信