一类非线性波动方程的经典解

IF 0.7 Q4 MECHANICS
S. Georgiev, K. Mebarki, K. Zennir
{"title":"一类非线性波动方程的经典解","authors":"S. Georgiev, K. Mebarki, K. Zennir","doi":"10.2298/tam201123013g","DOIUrl":null,"url":null,"abstract":"We study a class of initial value problems subject to nonlinear partial differential equations of hyperbolic type. A new topological approach is applied to prove the existence of nontrivial nonnegative solutions. More precisely, we propose a new integral representation of the solutions for the considered initial value problems and using this integral representation we establish existence of classical solutions for the considered classes of nonlinear wave equations.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"475 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical solutions for a class of nonlinear wave equations\",\"authors\":\"S. Georgiev, K. Mebarki, K. Zennir\",\"doi\":\"10.2298/tam201123013g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a class of initial value problems subject to nonlinear partial differential equations of hyperbolic type. A new topological approach is applied to prove the existence of nontrivial nonnegative solutions. More precisely, we propose a new integral representation of the solutions for the considered initial value problems and using this integral representation we establish existence of classical solutions for the considered classes of nonlinear wave equations.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"475 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam201123013g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam201123013g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类双曲型非线性偏微分方程的初值问题。应用一种新的拓扑方法来证明非平凡非负解的存在性。更准确地说,我们提出了所考虑的初值问题解的一种新的积分表示,并利用这种积分表示建立了所考虑的一类非线性波动方程经典解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical solutions for a class of nonlinear wave equations
We study a class of initial value problems subject to nonlinear partial differential equations of hyperbolic type. A new topological approach is applied to prove the existence of nontrivial nonnegative solutions. More precisely, we propose a new integral representation of the solutions for the considered initial value problems and using this integral representation we establish existence of classical solutions for the considered classes of nonlinear wave equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信