含无环光滑流形的同调球与辛填充

IF 0.8 3区 数学 Q2 MATHEMATICS
John B. Etnyre, B. Tosun
{"title":"含无环光滑流形的同调球与辛填充","authors":"John B. Etnyre, B. Tosun","doi":"10.1307/mmj/20206003","DOIUrl":null,"url":null,"abstract":"In this paper, we collect various structural results to determine when an integral homology $3$--sphere bounds an acyclic smooth $4$--manifold, and when this can be upgraded to a Stein embedding. In a different direction we study whether smooth embedding of connected sums of lens spaces in $\\mathbb{C}^2$ can be upgraded to a Stein embedding, and determined that this never happens.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Homology Spheres Bounding Acyclic Smooth Manifolds and Symplectic Fillings\",\"authors\":\"John B. Etnyre, B. Tosun\",\"doi\":\"10.1307/mmj/20206003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we collect various structural results to determine when an integral homology $3$--sphere bounds an acyclic smooth $4$--manifold, and when this can be upgraded to a Stein embedding. In a different direction we study whether smooth embedding of connected sums of lens spaces in $\\\\mathbb{C}^2$ can be upgraded to a Stein embedding, and determined that this never happens.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20206003\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20206003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们收集了各种结构结果,以确定积分同调$3$-球何时界于无环光滑$4$-流形,以及何时可升级为Stein嵌入。在另一个方向上,我们研究了$\mathbb{C}^2$中透镜空间的连通和的平滑嵌入是否可以升级为Stein嵌入,并确定这种情况永远不会发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homology Spheres Bounding Acyclic Smooth Manifolds and Symplectic Fillings
In this paper, we collect various structural results to determine when an integral homology $3$--sphere bounds an acyclic smooth $4$--manifold, and when this can be upgraded to a Stein embedding. In a different direction we study whether smooth embedding of connected sums of lens spaces in $\mathbb{C}^2$ can be upgraded to a Stein embedding, and determined that this never happens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信