通过腿驱动的生理学框架行人检测

Gongbo Liang, Qi Li, Xiangui Kang
{"title":"通过腿驱动的生理学框架行人检测","authors":"Gongbo Liang, Qi Li, Xiangui Kang","doi":"10.1109/ICIP.2016.7532895","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a leg-driven physiology framework for pedestrian detection. The framework is introduced to reduce the search space of candidate regions of pedestrians. Given a set of vertical line segments, we can generate a space of rectangular candidate regions, based on a model of body proportions. The proposed framework can be either integrated with or without learning-based pedestrian detection methods to validate the candidate regions. A symmetry constraint is then applied to validate each candidate region to decrease the false positive rate. The experiment demonstrates the promising results of the proposed method by comparing it with Dalal & Triggs method. For example, rectangular regions detected by the proposed method has much similar area to the ground truth than regions detected by Dalal & Triggs method.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"13 1","pages":"2926-2930"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pedestrian detection via a leg-driven physiology framework\",\"authors\":\"Gongbo Liang, Qi Li, Xiangui Kang\",\"doi\":\"10.1109/ICIP.2016.7532895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a leg-driven physiology framework for pedestrian detection. The framework is introduced to reduce the search space of candidate regions of pedestrians. Given a set of vertical line segments, we can generate a space of rectangular candidate regions, based on a model of body proportions. The proposed framework can be either integrated with or without learning-based pedestrian detection methods to validate the candidate regions. A symmetry constraint is then applied to validate each candidate region to decrease the false positive rate. The experiment demonstrates the promising results of the proposed method by comparing it with Dalal & Triggs method. For example, rectangular regions detected by the proposed method has much similar area to the ground truth than regions detected by Dalal & Triggs method.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"13 1\",\"pages\":\"2926-2930\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个腿部驱动的行人检测生理学框架。引入该框架来减小行人候选区域的搜索空间。给定一组垂直线段,我们可以根据身体比例模型生成一个矩形候选区域的空间。所提出的框架可以与基于学习的行人检测方法集成或不集成以验证候选区域。然后应用对称约束来验证每个候选区域,以降低误报率。通过与Dalal & Triggs方法的比较,验证了该方法的有效性。例如,该方法检测到的矩形区域比Dalal & Triggs方法检测到的区域具有更接近地面真值的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian detection via a leg-driven physiology framework
In this paper, we propose a leg-driven physiology framework for pedestrian detection. The framework is introduced to reduce the search space of candidate regions of pedestrians. Given a set of vertical line segments, we can generate a space of rectangular candidate regions, based on a model of body proportions. The proposed framework can be either integrated with or without learning-based pedestrian detection methods to validate the candidate regions. A symmetry constraint is then applied to validate each candidate region to decrease the false positive rate. The experiment demonstrates the promising results of the proposed method by comparing it with Dalal & Triggs method. For example, rectangular regions detected by the proposed method has much similar area to the ground truth than regions detected by Dalal & Triggs method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信