Pratyush Jaishanker, Daya Hall-Stratton, A. Fowler
{"title":"Temperature入侵日本神秘蜗牛幼螺的耐盐性","authors":"Pratyush Jaishanker, Daya Hall-Stratton, A. Fowler","doi":"10.3391/ai.2023.18.2.104203","DOIUrl":null,"url":null,"abstract":"The freshwater Japanese mystery snail (Heterogen japonica) was introduced to the United States in the early 1900s and has since established populations throughout the continent. The species has ovoviviparous reproduction (i.e., eggs hatch within the mother and develop inside before being released as juveniles), which is one reason it has been successful. Despite its wide geographic range, little is known about its physiological tolerances. For example, high salinities and temperatures may limit its spread, and determining the species’ tolerance to these environmental factors is crucial to predict its possible range expansion. To test this, 600 juvenile H. japonica (average shell length: 6.0mm, range: 4.5–8.3mm) were collected from 28 females from a lake in Virginia, USA and placed in a fully crossed design to test the interaction between salinity (0.2 and 2 PSU) and temperature (25 °C, 34 °C and 38 °C). Juveniles were monitored for mortality over two weeks. Kaplan–Meier survival analyses determined median survival probabilities, and generalized linear models compared differences in mean survival. All juveniles in 25 °C (except one in 0.2 PSU) survived (N=199/200), and all juveniles in 38 °C died by the end of 14 days (N=200), irrespective of salinity. However, juveniles kept at 38 °C showed higher early (≤4 days) mortality in 0.2 PSU, but lower early mortality in 2 PSU. Importantly, juveniles in 2 PSU survived for ≥2 days (N=294/300) across all temperatures, indicating that there may be scope for expansion through estuaries. Future work should examine temperatures between 34 and 38 °C and salinities above 2 PSU to understand the extent of covariance between salinity and temperature and create mathematical models to estimate survivability and spread.","PeriodicalId":8119,"journal":{"name":"Aquatic Invasions","volume":"21 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Temperature and salinity tolerances of juvenile invasive Japanese mystery snails\",\"authors\":\"Pratyush Jaishanker, Daya Hall-Stratton, A. Fowler\",\"doi\":\"10.3391/ai.2023.18.2.104203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The freshwater Japanese mystery snail (Heterogen japonica) was introduced to the United States in the early 1900s and has since established populations throughout the continent. The species has ovoviviparous reproduction (i.e., eggs hatch within the mother and develop inside before being released as juveniles), which is one reason it has been successful. Despite its wide geographic range, little is known about its physiological tolerances. For example, high salinities and temperatures may limit its spread, and determining the species’ tolerance to these environmental factors is crucial to predict its possible range expansion. To test this, 600 juvenile H. japonica (average shell length: 6.0mm, range: 4.5–8.3mm) were collected from 28 females from a lake in Virginia, USA and placed in a fully crossed design to test the interaction between salinity (0.2 and 2 PSU) and temperature (25 °C, 34 °C and 38 °C). Juveniles were monitored for mortality over two weeks. Kaplan–Meier survival analyses determined median survival probabilities, and generalized linear models compared differences in mean survival. All juveniles in 25 °C (except one in 0.2 PSU) survived (N=199/200), and all juveniles in 38 °C died by the end of 14 days (N=200), irrespective of salinity. However, juveniles kept at 38 °C showed higher early (≤4 days) mortality in 0.2 PSU, but lower early mortality in 2 PSU. Importantly, juveniles in 2 PSU survived for ≥2 days (N=294/300) across all temperatures, indicating that there may be scope for expansion through estuaries. Future work should examine temperatures between 34 and 38 °C and salinities above 2 PSU to understand the extent of covariance between salinity and temperature and create mathematical models to estimate survivability and spread.\",\"PeriodicalId\":8119,\"journal\":{\"name\":\"Aquatic Invasions\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Invasions\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3391/ai.2023.18.2.104203\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Invasions","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3391/ai.2023.18.2.104203","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Temperature and salinity tolerances of juvenile invasive Japanese mystery snails
The freshwater Japanese mystery snail (Heterogen japonica) was introduced to the United States in the early 1900s and has since established populations throughout the continent. The species has ovoviviparous reproduction (i.e., eggs hatch within the mother and develop inside before being released as juveniles), which is one reason it has been successful. Despite its wide geographic range, little is known about its physiological tolerances. For example, high salinities and temperatures may limit its spread, and determining the species’ tolerance to these environmental factors is crucial to predict its possible range expansion. To test this, 600 juvenile H. japonica (average shell length: 6.0mm, range: 4.5–8.3mm) were collected from 28 females from a lake in Virginia, USA and placed in a fully crossed design to test the interaction between salinity (0.2 and 2 PSU) and temperature (25 °C, 34 °C and 38 °C). Juveniles were monitored for mortality over two weeks. Kaplan–Meier survival analyses determined median survival probabilities, and generalized linear models compared differences in mean survival. All juveniles in 25 °C (except one in 0.2 PSU) survived (N=199/200), and all juveniles in 38 °C died by the end of 14 days (N=200), irrespective of salinity. However, juveniles kept at 38 °C showed higher early (≤4 days) mortality in 0.2 PSU, but lower early mortality in 2 PSU. Importantly, juveniles in 2 PSU survived for ≥2 days (N=294/300) across all temperatures, indicating that there may be scope for expansion through estuaries. Future work should examine temperatures between 34 and 38 °C and salinities above 2 PSU to understand the extent of covariance between salinity and temperature and create mathematical models to estimate survivability and spread.
期刊介绍:
Aquatic Invasions is an open access, peer-reviewed international journal focusing on academic research of biological invasions in both inland and coastal water ecosystems from around the world.
It was established in 2006 as initiative of the International Society of Limnology (SIL) Working Group on Aquatic Invasive Species (WGAIS) with start-up funding from the European Commission Sixth Framework Programme for Research and Technological Development Integrated Project ALARM.
Aquatic Invasions is an official journal of International Association for Open Knowledge on Invasive Alien Species (INVASIVESNET).
Aquatic Invasions provides a forum for professionals involved in research of aquatic non-native species, including a focus on the following:
• Patterns of non-native species dispersal, including range extensions with global change
• Trends in new introductions and establishment of non-native species
• Population dynamics of non-native species
• Ecological and evolutionary impacts of non-native species
• Behaviour of invasive and associated native species in invaded areas
• Prediction of new invasions
• Advances in non-native species identification and taxonomy