最近对问题的渐进算法

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
A. Mesrikhani, M. Farshi, Behnam Iranfar
{"title":"最近对问题的渐进算法","authors":"A. Mesrikhani, M. Farshi, Behnam Iranfar","doi":"10.1080/23799927.2020.1862302","DOIUrl":null,"url":null,"abstract":"Developing algorithms that produce approximate solutions is always interesting when we are generating the final solution for a problem. Progressive algorithms report a partial solution to the user which approximates the final solution in some specific steps. Thus, the user can stop the algorithm if the error of the partial solution is tolerable in terms of the application. In this paper, we study the closest pair problem under the Euclidean metric. A progressive algorithm is designed for the closest pair problem, which consists of steps and spends time in each step. In step r, the error of the partial solution is bounded by , where α is the ratio of the maximum pairwise distance and the minimum pairwise distance of points.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A progressive algorithm for the closest pair problem\",\"authors\":\"A. Mesrikhani, M. Farshi, Behnam Iranfar\",\"doi\":\"10.1080/23799927.2020.1862302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing algorithms that produce approximate solutions is always interesting when we are generating the final solution for a problem. Progressive algorithms report a partial solution to the user which approximates the final solution in some specific steps. Thus, the user can stop the algorithm if the error of the partial solution is tolerable in terms of the application. In this paper, we study the closest pair problem under the Euclidean metric. A progressive algorithm is designed for the closest pair problem, which consists of steps and spends time in each step. In step r, the error of the partial solution is bounded by , where α is the ratio of the maximum pairwise distance and the minimum pairwise distance of points.\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2020.1862302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2020.1862302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

当我们为一个问题生成最终解时,开发产生近似解的算法总是很有趣的。渐进式算法向用户报告在某些特定步骤中近似于最终解的部分解。因此,如果部分解的误差在应用程序中是可以容忍的,则用户可以停止算法。本文研究了欧几里德度量下的最接近对问题。针对最近对问题设计了一种递进算法,该算法由多个步骤组成,每一步都花费一定的时间。在步骤r中,部分解的误差为,其中α为点的最大两两距离与最小两两距离之比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A progressive algorithm for the closest pair problem
Developing algorithms that produce approximate solutions is always interesting when we are generating the final solution for a problem. Progressive algorithms report a partial solution to the user which approximates the final solution in some specific steps. Thus, the user can stop the algorithm if the error of the partial solution is tolerable in terms of the application. In this paper, we study the closest pair problem under the Euclidean metric. A progressive algorithm is designed for the closest pair problem, which consists of steps and spends time in each step. In step r, the error of the partial solution is bounded by , where α is the ratio of the maximum pairwise distance and the minimum pairwise distance of points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信