{"title":"从气球载平台用硬X射线和伽马射线成像太阳耀斑","authors":"C. Crannell","doi":"10.1029/GM054P0203","DOIUrl":null,"url":null,"abstract":"Hard X-rays and gamma rays carry the most direct evidence available for the roles of accelerated particles in solar flares. An approach that employs a spatial Fourier-transform technique for imaging the sources of these emissions is described and plans for developing a balloon-borne gamma ray imaging device (GRID) based on this instrumental approach is presented. This instrument, GRID on a balloon, would enable observations with a 1.6 arcsecond angular resolution, 10 millisecond time resolution, and whole-Sun field of view on long-duration balloon flights during MAX 1991.","PeriodicalId":9423,"journal":{"name":"Bulletin of the American Astronomical Society","volume":"29 1","pages":"203-207"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Imaging Solar Flares in Hard X Rays and Gamma Rays from Balloon‐Borne Platforms\",\"authors\":\"C. Crannell\",\"doi\":\"10.1029/GM054P0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hard X-rays and gamma rays carry the most direct evidence available for the roles of accelerated particles in solar flares. An approach that employs a spatial Fourier-transform technique for imaging the sources of these emissions is described and plans for developing a balloon-borne gamma ray imaging device (GRID) based on this instrumental approach is presented. This instrument, GRID on a balloon, would enable observations with a 1.6 arcsecond angular resolution, 10 millisecond time resolution, and whole-Sun field of view on long-duration balloon flights during MAX 1991.\",\"PeriodicalId\":9423,\"journal\":{\"name\":\"Bulletin of the American Astronomical Society\",\"volume\":\"29 1\",\"pages\":\"203-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Astronomical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/GM054P0203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Astronomical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/GM054P0203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Imaging Solar Flares in Hard X Rays and Gamma Rays from Balloon‐Borne Platforms
Hard X-rays and gamma rays carry the most direct evidence available for the roles of accelerated particles in solar flares. An approach that employs a spatial Fourier-transform technique for imaging the sources of these emissions is described and plans for developing a balloon-borne gamma ray imaging device (GRID) based on this instrumental approach is presented. This instrument, GRID on a balloon, would enable observations with a 1.6 arcsecond angular resolution, 10 millisecond time resolution, and whole-Sun field of view on long-duration balloon flights during MAX 1991.