Jie Cheng, J. Greshock, Leming Shi, Jeffery L. Painter, Xiwu Lin, Kwan R. Lee, Shu Zheng, R. Wooster, L. Pusztai, A. Menius
{"title":"微阵列数据分析中的自适应特征选择方法","authors":"Jie Cheng, J. Greshock, Leming Shi, Jeffery L. Painter, Xiwu Lin, Kwan R. Lee, Shu Zheng, R. Wooster, L. Pusztai, A. Menius","doi":"10.1109/BIBM.2012.6392686","DOIUrl":null,"url":null,"abstract":"Feature selection is one of the most important research topics in high dimensional array data analysis. We propose a two-way filtering based method that utilizes a pair of statistics coupled with rigorous cross-validation to identify the most informative features from different types of distributions. We evaluate the utility of the proposed adaptive feature selection method on six MicroArray Quality Control Phase II (MAQC-II) datasets. The results show that our method yields models with significantly fewer features and can achieve comparable or superior classification performance compared to models generated from other feature selection methods, suggesting high quality feature selection.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An adaptive feature selection method for microarray data analysis\",\"authors\":\"Jie Cheng, J. Greshock, Leming Shi, Jeffery L. Painter, Xiwu Lin, Kwan R. Lee, Shu Zheng, R. Wooster, L. Pusztai, A. Menius\",\"doi\":\"10.1109/BIBM.2012.6392686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is one of the most important research topics in high dimensional array data analysis. We propose a two-way filtering based method that utilizes a pair of statistics coupled with rigorous cross-validation to identify the most informative features from different types of distributions. We evaluate the utility of the proposed adaptive feature selection method on six MicroArray Quality Control Phase II (MAQC-II) datasets. The results show that our method yields models with significantly fewer features and can achieve comparable or superior classification performance compared to models generated from other feature selection methods, suggesting high quality feature selection.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2012.6392686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An adaptive feature selection method for microarray data analysis
Feature selection is one of the most important research topics in high dimensional array data analysis. We propose a two-way filtering based method that utilizes a pair of statistics coupled with rigorous cross-validation to identify the most informative features from different types of distributions. We evaluate the utility of the proposed adaptive feature selection method on six MicroArray Quality Control Phase II (MAQC-II) datasets. The results show that our method yields models with significantly fewer features and can achieve comparable or superior classification performance compared to models generated from other feature selection methods, suggesting high quality feature selection.