{"title":"色氨酸的超顺磁性和蛋白质的行走记忆","authors":"S. Raja, A. Dasgupta, N. Jain","doi":"10.19185/MATTERS.201602000027","DOIUrl":null,"url":null,"abstract":"Superparamagnetism of tryptophan implying the presence of magnetic domain is reported. The observation helps us to conceive assembly of proteins as a physical lattice gas with multidimensional Ising character, each lattice points assuming discrete spin states. When magnetic field is applied the equilibrium is lost and the population density of one spin state increases (unidirectional alignment), resulting in net magnetization. Spatial coherence between the identical spin states further imparts a ferromagnetic memory. This effect is observed using direct nanoscale video imaging. Out of the three proteins ferritin serum albumin and fibrinogen, fibrinogen showed an attenuated response, the protein being essentially one dimensional. Eventually, Ising lattice is capable of showing ferromagnetic memory only when it has a higher dimensional character. The study highlights possible presence of long range spatial coherence at physiological condition and a plausible microscopic origin of the same.","PeriodicalId":8447,"journal":{"name":"arXiv: Biomolecules","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Superparamagnetism of tryptophan and walk memory of proteins\",\"authors\":\"S. Raja, A. Dasgupta, N. Jain\",\"doi\":\"10.19185/MATTERS.201602000027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superparamagnetism of tryptophan implying the presence of magnetic domain is reported. The observation helps us to conceive assembly of proteins as a physical lattice gas with multidimensional Ising character, each lattice points assuming discrete spin states. When magnetic field is applied the equilibrium is lost and the population density of one spin state increases (unidirectional alignment), resulting in net magnetization. Spatial coherence between the identical spin states further imparts a ferromagnetic memory. This effect is observed using direct nanoscale video imaging. Out of the three proteins ferritin serum albumin and fibrinogen, fibrinogen showed an attenuated response, the protein being essentially one dimensional. Eventually, Ising lattice is capable of showing ferromagnetic memory only when it has a higher dimensional character. The study highlights possible presence of long range spatial coherence at physiological condition and a plausible microscopic origin of the same.\",\"PeriodicalId\":8447,\"journal\":{\"name\":\"arXiv: Biomolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19185/MATTERS.201602000027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19185/MATTERS.201602000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superparamagnetism of tryptophan and walk memory of proteins
Superparamagnetism of tryptophan implying the presence of magnetic domain is reported. The observation helps us to conceive assembly of proteins as a physical lattice gas with multidimensional Ising character, each lattice points assuming discrete spin states. When magnetic field is applied the equilibrium is lost and the population density of one spin state increases (unidirectional alignment), resulting in net magnetization. Spatial coherence between the identical spin states further imparts a ferromagnetic memory. This effect is observed using direct nanoscale video imaging. Out of the three proteins ferritin serum albumin and fibrinogen, fibrinogen showed an attenuated response, the protein being essentially one dimensional. Eventually, Ising lattice is capable of showing ferromagnetic memory only when it has a higher dimensional character. The study highlights possible presence of long range spatial coherence at physiological condition and a plausible microscopic origin of the same.