分数Sobolev空间$W^{s, p}$到$ell$单连通流形的光滑映射密度

Q4 Mathematics
P. Bousquet, A. Ponce, Jean Van Schaftingen
{"title":"分数Sobolev空间$W^{s, p}$到$ell$单连通流形的光滑映射密度","authors":"P. Bousquet, A. Ponce, Jean Van Schaftingen","doi":"10.5802/cml.5","DOIUrl":null,"url":null,"abstract":"Given a compact manifold $N^n subset mathbb{R}^u$ and real numbers $s ge 1$ and $1 le p < infty$, we prove that the class $C^infty(overline{Q}^m; N^n)$ of smooth maps on the cube with values into $N^n$ is strongly dense in the fractional Sobolev space $W^{s, p}(Q^m; N^n)$ when $N^n$ is $lfloor sp floor$ simply connected. For $sp$ integer, we prove weak sequential density of $C^infty(overline{Q}^m; N^n)$ when $N^n$ is $sp - 1$ simply connected. The proofs are based on the existence of a retraction of $mathbb{^ u$ onto $N^n$ except for a small subset of $N^n$ and on a pointwise estimate of fractional derivatives of composition of maps in $W^{s, p} cap W^{1, sp}$.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"21 1","pages":"3-22"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $ell$ simply connected manifolds when $s ge 1$\",\"authors\":\"P. Bousquet, A. Ponce, Jean Van Schaftingen\",\"doi\":\"10.5802/cml.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a compact manifold $N^n subset mathbb{R}^u$ and real numbers $s ge 1$ and $1 le p < infty$, we prove that the class $C^infty(overline{Q}^m; N^n)$ of smooth maps on the cube with values into $N^n$ is strongly dense in the fractional Sobolev space $W^{s, p}(Q^m; N^n)$ when $N^n$ is $lfloor sp floor$ simply connected. For $sp$ integer, we prove weak sequential density of $C^infty(overline{Q}^m; N^n)$ when $N^n$ is $sp - 1$ simply connected. The proofs are based on the existence of a retraction of $mathbb{^ u$ onto $N^n$ except for a small subset of $N^n$ and on a pointwise estimate of fractional derivatives of composition of maps in $W^{s, p} cap W^{1, sp}$.\",\"PeriodicalId\":52130,\"journal\":{\"name\":\"Confluentes Mathematici\",\"volume\":\"21 1\",\"pages\":\"3-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Confluentes Mathematici\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/cml.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/cml.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 19

摘要

给定一个紧流形$N^ N子集mathbb{R}^u$和实数$s ^ 1$和$1 lep < inty $,证明了类$C^ inty (overline{Q}^m;N^ N)$在分数Sobolev空间W^{s, p}(Q^m;N^ N)$当$N^ N $为$ 1层sp层$单连通时。对于$sp$整数,我们证明了$C^ inty (overline{Q}^m;N^ N)$当N^ N $为单连通$sp - 1$时。这些证明是基于$mathbb{^ u$对$N^ N $(除了$N^ N $的一个小子集)的一个缩回的存在性和$W^{s, p} cap W^{1, sp}$中映射组合的分数阶导数的一个点估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $ell$ simply connected manifolds when $s ge 1$
Given a compact manifold $N^n subset mathbb{R}^u$ and real numbers $s ge 1$ and $1 le p < infty$, we prove that the class $C^infty(overline{Q}^m; N^n)$ of smooth maps on the cube with values into $N^n$ is strongly dense in the fractional Sobolev space $W^{s, p}(Q^m; N^n)$ when $N^n$ is $lfloor sp floor$ simply connected. For $sp$ integer, we prove weak sequential density of $C^infty(overline{Q}^m; N^n)$ when $N^n$ is $sp - 1$ simply connected. The proofs are based on the existence of a retraction of $mathbb{^ u$ onto $N^n$ except for a small subset of $N^n$ and on a pointwise estimate of fractional derivatives of composition of maps in $W^{s, p} cap W^{1, sp}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Confluentes Mathematici
Confluentes Mathematici Mathematics-Mathematics (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
5
期刊介绍: Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信