{"title":"基于无杂散双共振Sc0.15Al0.85N横向耦合交变厚度(LCAT)模式谐振器的单片双带滤波器","authors":"Chen Liu, Yao Zhu, Nan Wang, Bangtao Chen","doi":"10.1109/Transducers50396.2021.9495480","DOIUrl":null,"url":null,"abstract":"Single-chip dual-band radio-frequency (RF) MEMS filters, as well as their constituting dual-resonance modified laterally coupled alternating thickness (LCAT) mode resonators based on Sc0.15Al0.85N are demonstrated. The dependence of the resonant frequency ($f_{s}$), the effective coupling coefficient (${k^{2}}_{eff}$) and the quality factor ($Q_{a}$) of both modes on the electrode pitches of the modified LCAT mode resonators are analyzed, and measurement results show that ${k^{2}}_{eff}$ and $Q_{a}$ of both modes can achieve over 5% and 700, respectively, with optimized pitch. The dual-band filter is designed to consist of modified LCAT resonators with 2 different pitches to achieve the low band around 3.3 GHz and high band over 4 GHz on a single chip. The measured bandwidths of the dual-band filter are 66 MHz and 33 MHz, respectively. The performance of the dual-band filter indicates that the presented resonators and filters are promising for the carrier aggregation (CA) technology in 5G applications.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"38 1","pages":"309-312"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single-Chip Dual-Band Filters Based on Spurious-Free Dual-Resonance Sc0.15Al0.85N Laterally Coupled Alternating Thickness (LCAT) Mode Resonators\",\"authors\":\"Chen Liu, Yao Zhu, Nan Wang, Bangtao Chen\",\"doi\":\"10.1109/Transducers50396.2021.9495480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-chip dual-band radio-frequency (RF) MEMS filters, as well as their constituting dual-resonance modified laterally coupled alternating thickness (LCAT) mode resonators based on Sc0.15Al0.85N are demonstrated. The dependence of the resonant frequency ($f_{s}$), the effective coupling coefficient (${k^{2}}_{eff}$) and the quality factor ($Q_{a}$) of both modes on the electrode pitches of the modified LCAT mode resonators are analyzed, and measurement results show that ${k^{2}}_{eff}$ and $Q_{a}$ of both modes can achieve over 5% and 700, respectively, with optimized pitch. The dual-band filter is designed to consist of modified LCAT resonators with 2 different pitches to achieve the low band around 3.3 GHz and high band over 4 GHz on a single chip. The measured bandwidths of the dual-band filter are 66 MHz and 33 MHz, respectively. The performance of the dual-band filter indicates that the presented resonators and filters are promising for the carrier aggregation (CA) technology in 5G applications.\",\"PeriodicalId\":6814,\"journal\":{\"name\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"volume\":\"38 1\",\"pages\":\"309-312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Transducers50396.2021.9495480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-Chip Dual-Band Filters Based on Spurious-Free Dual-Resonance Sc0.15Al0.85N Laterally Coupled Alternating Thickness (LCAT) Mode Resonators
Single-chip dual-band radio-frequency (RF) MEMS filters, as well as their constituting dual-resonance modified laterally coupled alternating thickness (LCAT) mode resonators based on Sc0.15Al0.85N are demonstrated. The dependence of the resonant frequency ($f_{s}$), the effective coupling coefficient (${k^{2}}_{eff}$) and the quality factor ($Q_{a}$) of both modes on the electrode pitches of the modified LCAT mode resonators are analyzed, and measurement results show that ${k^{2}}_{eff}$ and $Q_{a}$ of both modes can achieve over 5% and 700, respectively, with optimized pitch. The dual-band filter is designed to consist of modified LCAT resonators with 2 different pitches to achieve the low band around 3.3 GHz and high band over 4 GHz on a single chip. The measured bandwidths of the dual-band filter are 66 MHz and 33 MHz, respectively. The performance of the dual-band filter indicates that the presented resonators and filters are promising for the carrier aggregation (CA) technology in 5G applications.