{"title":"信息点阵学习","authors":"Haizi Yu, James A. Evans, L. Varshney","doi":"10.1613/jair.1.14277","DOIUrl":null,"url":null,"abstract":"We propose Information Lattice Learning (ILL) as a general framework to learn rules of a signal (e.g., an image or a probability distribution). In our definition, a rule is a coarsened signal used to help us gain one interpretable insight about the original signal. To make full sense of what might govern the signal’s intrinsic structure, we seek multiple disentangled rules arranged in a hierarchy, called a lattice. Compared to representation/rule-learning models optimized for a specific task (e.g., classification), ILL focuses on explainability: it is designed to mimic human experiential learning and discover rules akin to those humans can distill and comprehend. This paper details the math and algorithms of ILL, and illustrates how it addresses the fundamental question “what makes X an X” by creating rule-based explanations designed to help humans understand. Our focus is on explaining X rather than (re)generating it. We present applications in knowledge discovery, using ILL to distill music theory from scores and chemical laws from molecules and further revealing connections between them. We show ILL’s efficacy and interpretability on benchmarks and assessments, as well as a demonstration of ILL-enhanced classifiers achieving human-level digit recognition using only one or a few MNIST training examples (1–10 per class).","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Information Lattice Learning\",\"authors\":\"Haizi Yu, James A. Evans, L. Varshney\",\"doi\":\"10.1613/jair.1.14277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Information Lattice Learning (ILL) as a general framework to learn rules of a signal (e.g., an image or a probability distribution). In our definition, a rule is a coarsened signal used to help us gain one interpretable insight about the original signal. To make full sense of what might govern the signal’s intrinsic structure, we seek multiple disentangled rules arranged in a hierarchy, called a lattice. Compared to representation/rule-learning models optimized for a specific task (e.g., classification), ILL focuses on explainability: it is designed to mimic human experiential learning and discover rules akin to those humans can distill and comprehend. This paper details the math and algorithms of ILL, and illustrates how it addresses the fundamental question “what makes X an X” by creating rule-based explanations designed to help humans understand. Our focus is on explaining X rather than (re)generating it. We present applications in knowledge discovery, using ILL to distill music theory from scores and chemical laws from molecules and further revealing connections between them. We show ILL’s efficacy and interpretability on benchmarks and assessments, as well as a demonstration of ILL-enhanced classifiers achieving human-level digit recognition using only one or a few MNIST training examples (1–10 per class).\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.14277\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14277","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
We propose Information Lattice Learning (ILL) as a general framework to learn rules of a signal (e.g., an image or a probability distribution). In our definition, a rule is a coarsened signal used to help us gain one interpretable insight about the original signal. To make full sense of what might govern the signal’s intrinsic structure, we seek multiple disentangled rules arranged in a hierarchy, called a lattice. Compared to representation/rule-learning models optimized for a specific task (e.g., classification), ILL focuses on explainability: it is designed to mimic human experiential learning and discover rules akin to those humans can distill and comprehend. This paper details the math and algorithms of ILL, and illustrates how it addresses the fundamental question “what makes X an X” by creating rule-based explanations designed to help humans understand. Our focus is on explaining X rather than (re)generating it. We present applications in knowledge discovery, using ILL to distill music theory from scores and chemical laws from molecules and further revealing connections between them. We show ILL’s efficacy and interpretability on benchmarks and assessments, as well as a demonstration of ILL-enhanced classifiers achieving human-level digit recognition using only one or a few MNIST training examples (1–10 per class).
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.