A. Alizadeh, M. Shishehsaz, S. Shahrooi, Arash Reza
{"title":"基于修正耦合应力理论的粘弹性纳米圆盘自由振动特性","authors":"A. Alizadeh, M. Shishehsaz, S. Shahrooi, Arash Reza","doi":"10.1177/03093247221116053","DOIUrl":null,"url":null,"abstract":"This paper investigates the vibrational behavior of a viscoelastic and size-dependent nano-disk based on the modified couple stress theory (MCST). The material characteristics in nano-scale are modeled according to Zener viscoelastic constitutive relation. In addition, displacement components are defined based on classical plate theory. Leaderman integral is also used to determine the viscous parts of the stress tensor. Hamilton’s principle is utilized to derive the governing equations of motion for specifying the strain, kinetic energy, and viscous work. The obtained equations are discretized with the help of the Galerkin method and decoupled through the diagonalization procedure. Laplace transformation is employed to solve the resulting equations in differential–integral form. The damping ratio, the imaginary part and real part of the Eigen frequency of the considered nano-disk are calculated to investigate the effects of influential parameters on the nano-disk vibrational behavior. These parameters include nonlocal parameter boundary conditions, geometric constant, power constant, and element relaxation coefficient. Results obtained on different mode shapes indicate that increasing the dimensionless element relaxation coefficient is followed by a decrease in the imaginary part of the Eigen frequency regarding the energy dissipation as well as a decrease in the real part of the Eigen frequency. Furthermore, increasing the h/l ratio is accompanied by variations in the imaginary part, real part, and damping ratio. According to the results, the effect of damping on vibrational behavior of the nano disk is more distinguished for smaller values of h/l.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Free vibration characteristics of viscoelastic nano-disks based on modified couple stress theory\",\"authors\":\"A. Alizadeh, M. Shishehsaz, S. Shahrooi, Arash Reza\",\"doi\":\"10.1177/03093247221116053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the vibrational behavior of a viscoelastic and size-dependent nano-disk based on the modified couple stress theory (MCST). The material characteristics in nano-scale are modeled according to Zener viscoelastic constitutive relation. In addition, displacement components are defined based on classical plate theory. Leaderman integral is also used to determine the viscous parts of the stress tensor. Hamilton’s principle is utilized to derive the governing equations of motion for specifying the strain, kinetic energy, and viscous work. The obtained equations are discretized with the help of the Galerkin method and decoupled through the diagonalization procedure. Laplace transformation is employed to solve the resulting equations in differential–integral form. The damping ratio, the imaginary part and real part of the Eigen frequency of the considered nano-disk are calculated to investigate the effects of influential parameters on the nano-disk vibrational behavior. These parameters include nonlocal parameter boundary conditions, geometric constant, power constant, and element relaxation coefficient. Results obtained on different mode shapes indicate that increasing the dimensionless element relaxation coefficient is followed by a decrease in the imaginary part of the Eigen frequency regarding the energy dissipation as well as a decrease in the real part of the Eigen frequency. Furthermore, increasing the h/l ratio is accompanied by variations in the imaginary part, real part, and damping ratio. According to the results, the effect of damping on vibrational behavior of the nano disk is more distinguished for smaller values of h/l.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247221116053\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221116053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Free vibration characteristics of viscoelastic nano-disks based on modified couple stress theory
This paper investigates the vibrational behavior of a viscoelastic and size-dependent nano-disk based on the modified couple stress theory (MCST). The material characteristics in nano-scale are modeled according to Zener viscoelastic constitutive relation. In addition, displacement components are defined based on classical plate theory. Leaderman integral is also used to determine the viscous parts of the stress tensor. Hamilton’s principle is utilized to derive the governing equations of motion for specifying the strain, kinetic energy, and viscous work. The obtained equations are discretized with the help of the Galerkin method and decoupled through the diagonalization procedure. Laplace transformation is employed to solve the resulting equations in differential–integral form. The damping ratio, the imaginary part and real part of the Eigen frequency of the considered nano-disk are calculated to investigate the effects of influential parameters on the nano-disk vibrational behavior. These parameters include nonlocal parameter boundary conditions, geometric constant, power constant, and element relaxation coefficient. Results obtained on different mode shapes indicate that increasing the dimensionless element relaxation coefficient is followed by a decrease in the imaginary part of the Eigen frequency regarding the energy dissipation as well as a decrease in the real part of the Eigen frequency. Furthermore, increasing the h/l ratio is accompanied by variations in the imaginary part, real part, and damping ratio. According to the results, the effect of damping on vibrational behavior of the nano disk is more distinguished for smaller values of h/l.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).