从应用程序数据集计算通用抽象

Nelly Barret, I. Manolescu, P. Upadhyay
{"title":"从应用程序数据集计算通用抽象","authors":"Nelly Barret, I. Manolescu, P. Upadhyay","doi":"10.48786/edbt.2024.09","DOIUrl":null,"url":null,"abstract":"Digital data plays a central role in sciences, journalism, environment, digital humanities, etc. Open Data sharing initiatives lead to many large, interesting datasets being shared online. Some of these are RDF graphs, but other formats like CSV, relational, property graphs, JSON or XML documents are also frequent. Practitioners need to understand a dataset to decide whether it is suited to their needs. Datasets may come with a schema and/or may be summarized, however the first is not always provided and the latter is often too technical for non-IT users. To overcome these limitations, we present an end-to-end dataset abstraction approach, which ( 𝑖 ) applies on any (semi)structured data model; ( 𝑖𝑖 ) computes a description meant for human users, in the form of an Entity-Relationship diagram; ( 𝑖𝑖𝑖 ) integrates Information Extraction and data profiling to classify dataset entities among a large set of intelligible categories. We implemented our approach in a system called Abstra, and detail its performance on various datasets.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"14 1","pages":"94-107"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computing Generic Abstractions from Application Datasets\",\"authors\":\"Nelly Barret, I. Manolescu, P. Upadhyay\",\"doi\":\"10.48786/edbt.2024.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital data plays a central role in sciences, journalism, environment, digital humanities, etc. Open Data sharing initiatives lead to many large, interesting datasets being shared online. Some of these are RDF graphs, but other formats like CSV, relational, property graphs, JSON or XML documents are also frequent. Practitioners need to understand a dataset to decide whether it is suited to their needs. Datasets may come with a schema and/or may be summarized, however the first is not always provided and the latter is often too technical for non-IT users. To overcome these limitations, we present an end-to-end dataset abstraction approach, which ( 𝑖 ) applies on any (semi)structured data model; ( 𝑖𝑖 ) computes a description meant for human users, in the form of an Entity-Relationship diagram; ( 𝑖𝑖𝑖 ) integrates Information Extraction and data profiling to classify dataset entities among a large set of intelligible categories. We implemented our approach in a system called Abstra, and detail its performance on various datasets.\",\"PeriodicalId\":88813,\"journal\":{\"name\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"volume\":\"14 1\",\"pages\":\"94-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48786/edbt.2024.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2024.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数字数据在科学、新闻、环境、数字人文等领域发挥着核心作用。开放数据共享计划导致许多大型、有趣的数据集在网上共享。其中一些是RDF图,但其他格式,如CSV、关系图、属性图、JSON或XML文档也很常见。从业者需要了解数据集,以决定它是否适合他们的需求。数据集可能带有模式和/或汇总,但是前者并不总是提供,而后者对于非it用户来说往往过于技术性。为了克服这些限制,我们提出了一种端到端数据抽象方法,该方法适用于任何(半)结构化数据模型;(s)以实体关系图的形式计算用于人类用户的描述;将信息抽取和数据分析集成在一起,将数据集实体划分为大量可理解的类别。我们在一个名为Abstra的系统中实现了我们的方法,并详细说明了它在各种数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Generic Abstractions from Application Datasets
Digital data plays a central role in sciences, journalism, environment, digital humanities, etc. Open Data sharing initiatives lead to many large, interesting datasets being shared online. Some of these are RDF graphs, but other formats like CSV, relational, property graphs, JSON or XML documents are also frequent. Practitioners need to understand a dataset to decide whether it is suited to their needs. Datasets may come with a schema and/or may be summarized, however the first is not always provided and the latter is often too technical for non-IT users. To overcome these limitations, we present an end-to-end dataset abstraction approach, which ( 𝑖 ) applies on any (semi)structured data model; ( 𝑖𝑖 ) computes a description meant for human users, in the form of an Entity-Relationship diagram; ( 𝑖𝑖𝑖 ) integrates Information Extraction and data profiling to classify dataset entities among a large set of intelligible categories. We implemented our approach in a system called Abstra, and detail its performance on various datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信