共沉淀法合成纳米磁铁矿及表征

R. Rahimah, A. Fadli, Yelmida Yelmida, N. Nurfajriani, Z. Zakwan
{"title":"共沉淀法合成纳米磁铁矿及表征","authors":"R. Rahimah, A. Fadli, Yelmida Yelmida, N. Nurfajriani, Z. Zakwan","doi":"10.24114/ijcst.v2i2.13995","DOIUrl":null,"url":null,"abstract":"Magnetite (Fe3O4) nanoparticles becomes a new innovation that gets attention of biomedicine scientists. Magnetite can be applied to cancer treatment as a drug carrier because it’s good biocompatibility and very low toxicity. The aim of this study was to determine the effect of temperature and retention time on the magnetite particle characteristics prepared by co-precipitation method. The first, FeCl3 and FeCl2 with 2:1 mole ratio were reacted with 10% NH4OH at 40 - 80°C temperatures during 1 – 30 minutes in a beaker glass. Subsequently, the precipitate was separated using filter paper and it dried into air oven at 100°C. The characteristic of obtained magnetite powder were determined using XRD and SEM. From XRD pattern indicates that magnetite formed at all temperatures with crystallite diameter in the range of 7-13 nm. The SEM results indicate the agglomeration of the magnetite particles with size in the range of 1.37 to 1.72 μm. In the other hand, the higher of temperature and retention time will make the agglomeration of the particles become more uniform. The increasing of temperature and the retention time will increase the magnetite crystallinity level.","PeriodicalId":13519,"journal":{"name":"Indonesian Journal of Chemical Science and Technology (IJCST)","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and Characterization Nanomagnetite by Co-precipitation\",\"authors\":\"R. Rahimah, A. Fadli, Yelmida Yelmida, N. Nurfajriani, Z. Zakwan\",\"doi\":\"10.24114/ijcst.v2i2.13995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetite (Fe3O4) nanoparticles becomes a new innovation that gets attention of biomedicine scientists. Magnetite can be applied to cancer treatment as a drug carrier because it’s good biocompatibility and very low toxicity. The aim of this study was to determine the effect of temperature and retention time on the magnetite particle characteristics prepared by co-precipitation method. The first, FeCl3 and FeCl2 with 2:1 mole ratio were reacted with 10% NH4OH at 40 - 80°C temperatures during 1 – 30 minutes in a beaker glass. Subsequently, the precipitate was separated using filter paper and it dried into air oven at 100°C. The characteristic of obtained magnetite powder were determined using XRD and SEM. From XRD pattern indicates that magnetite formed at all temperatures with crystallite diameter in the range of 7-13 nm. The SEM results indicate the agglomeration of the magnetite particles with size in the range of 1.37 to 1.72 μm. In the other hand, the higher of temperature and retention time will make the agglomeration of the particles become more uniform. The increasing of temperature and the retention time will increase the magnetite crystallinity level.\",\"PeriodicalId\":13519,\"journal\":{\"name\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/ijcst.v2i2.13995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemical Science and Technology (IJCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/ijcst.v2i2.13995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

磁铁矿(Fe3O4)纳米颗粒是近年来备受生物医学界关注的一项新技术。磁铁矿具有良好的生物相容性和极低的毒性,可作为药物载体应用于癌症治疗。本研究的目的是确定温度和保留时间对共沉淀法制备的磁铁矿颗粒特性的影响。首先,FeCl3和FeCl2以2:1的摩尔比在烧杯中与10%的NH4OH在40 - 80℃的温度下反应1 - 30分钟。随后,用滤纸将沉淀分离,在100℃的空气烘箱中干燥。采用XRD和SEM对所得磁铁矿粉体进行了表征。XRD图谱表明,在所有温度下均形成了磁铁矿,晶粒直径在7 ~ 13 nm之间。扫描电镜结果表明,晶粒尺寸在1.37 ~ 1.72 μm之间的磁铁矿颗粒发生团聚。另一方面,较高的温度和停留时间将使颗粒的团聚变得更加均匀。温度的升高和保留时间的延长会提高磁铁矿的结晶度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and Characterization Nanomagnetite by Co-precipitation
Magnetite (Fe3O4) nanoparticles becomes a new innovation that gets attention of biomedicine scientists. Magnetite can be applied to cancer treatment as a drug carrier because it’s good biocompatibility and very low toxicity. The aim of this study was to determine the effect of temperature and retention time on the magnetite particle characteristics prepared by co-precipitation method. The first, FeCl3 and FeCl2 with 2:1 mole ratio were reacted with 10% NH4OH at 40 - 80°C temperatures during 1 – 30 minutes in a beaker glass. Subsequently, the precipitate was separated using filter paper and it dried into air oven at 100°C. The characteristic of obtained magnetite powder were determined using XRD and SEM. From XRD pattern indicates that magnetite formed at all temperatures with crystallite diameter in the range of 7-13 nm. The SEM results indicate the agglomeration of the magnetite particles with size in the range of 1.37 to 1.72 μm. In the other hand, the higher of temperature and retention time will make the agglomeration of the particles become more uniform. The increasing of temperature and the retention time will increase the magnetite crystallinity level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信