深度神经网络与神经生理学工作记忆研究的一致性:来自不同负荷下地形脑电图数据区分的见解

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS
Yurui Ming, Chin-Teng Lin
{"title":"深度神经网络与神经生理学工作记忆研究的一致性:来自不同负荷下地形脑电图数据区分的见解","authors":"Yurui Ming, Chin-Teng Lin","doi":"10.1109/MSMC.2021.3090569","DOIUrl":null,"url":null,"abstract":"The automatic feature-extraction capability of deep neural networks (DNNs) endows them with the potential for analyzing complicated electroencephalogram (EEG) data captured from brain functionality research. This article investigates the potential coherent correspondence between the region of interest (ROI) for DNNs to explore, and the ROI for conventional neurophysiological-oriented methods to work with, as exemplified in the case of a working memory study. The attention mechanism induced by global average pooling (GAP) is applied to a public EEG data set of a working memory test to unveil these coherent ROIs via a classification problem. The results show the potential alignment of the ROIs from different discipline methods, and consequently asserts the confidence and promise of utilizing DNNs for EEG data analysis.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"os-17 1","pages":"24-30"},"PeriodicalIF":1.9000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Coherence of the Working Memory Study Between Deep Neural Networks and Neurophysiology: Insights From Distinguishing Topographical Electroencephalogram Data Under Different Workloads\",\"authors\":\"Yurui Ming, Chin-Teng Lin\",\"doi\":\"10.1109/MSMC.2021.3090569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic feature-extraction capability of deep neural networks (DNNs) endows them with the potential for analyzing complicated electroencephalogram (EEG) data captured from brain functionality research. This article investigates the potential coherent correspondence between the region of interest (ROI) for DNNs to explore, and the ROI for conventional neurophysiological-oriented methods to work with, as exemplified in the case of a working memory study. The attention mechanism induced by global average pooling (GAP) is applied to a public EEG data set of a working memory test to unveil these coherent ROIs via a classification problem. The results show the potential alignment of the ROIs from different discipline methods, and consequently asserts the confidence and promise of utilizing DNNs for EEG data analysis.\",\"PeriodicalId\":43649,\"journal\":{\"name\":\"IEEE Systems Man and Cybernetics Magazine\",\"volume\":\"os-17 1\",\"pages\":\"24-30\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Man and Cybernetics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMC.2021.3090569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMC.2021.3090569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络(dnn)的自动特征提取能力使其具有分析脑功能研究中捕获的复杂脑电图(EEG)数据的潜力。本文以工作记忆研究为例,探讨了dnn探索感兴趣区域(ROI)与传统神经生理学导向方法的ROI之间的潜在一致对应关系。将全局平均池化(GAP)诱导的注意机制应用于工作记忆测试的公开脑电数据集,通过分类问题揭示这些连贯的roi。结果显示了不同学科方法的roi的潜在一致性,从而断言了利用深度神经网络进行脑电数据分析的信心和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Coherence of the Working Memory Study Between Deep Neural Networks and Neurophysiology: Insights From Distinguishing Topographical Electroencephalogram Data Under Different Workloads
The automatic feature-extraction capability of deep neural networks (DNNs) endows them with the potential for analyzing complicated electroencephalogram (EEG) data captured from brain functionality research. This article investigates the potential coherent correspondence between the region of interest (ROI) for DNNs to explore, and the ROI for conventional neurophysiological-oriented methods to work with, as exemplified in the case of a working memory study. The attention mechanism induced by global average pooling (GAP) is applied to a public EEG data set of a working memory test to unveil these coherent ROIs via a classification problem. The results show the potential alignment of the ROIs from different discipline methods, and consequently asserts the confidence and promise of utilizing DNNs for EEG data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信