T. Hayes, Brent Halldorson, P. Horner, J. Ewing, James R. Werline, B. F. Severin
{"title":"机械蒸汽再压缩处理页岩气返排水","authors":"T. Hayes, Brent Halldorson, P. Horner, J. Ewing, James R. Werline, B. F. Severin","doi":"10.2118/170247-PA","DOIUrl":null,"url":null,"abstract":"Summary Used extensively by the food, chemical, and pharmaceutical industries, the mechanical-vapor-recompression (MVR) process is viewed as a reliable method for recovering demineralized water from concentrated brines. Devon Energy has supported the operation of an advanced MVR system at a north-central Texas (Barnett shale region) treatment facility. At this facility, pretreatment included caustic addition and clarification for total-suspended-solids and iron control. Pretreated shale-gas flowback water was then sent to three MVR units, each rated at 2,000–2,500 B/D (318–398 m3/d). Data were collected during a 60-day period in the summer of 2010. Distilled-water recovery volume averaged 72.5% of the influent water to the MVR units. The influent total dissolved solids (TDS) fed to the MVR units averaged just under 50 000 mg/L. More than 99% of the TDS were captured in the concentrate stream. The fate of multivalent cations; total petroleum hydrocarbons (TPH); and benzene, toluene, ethylbenzene, and xylenes (BTEX) throughout the treatment system was determined. Most of the iron and TPH removal (90 and 84%, respectively) occurred during pretreatment. The total removal of iron, magnesium, calcium, barium, and boron from the distillate exceeded 99%. BTEX removal from the distillate exceeded 95%. Electric power at the facility was provided by two natural-gas generators, and compressors associated with the MVR units were driven by natural-gas-fueled internal-combustion engines. Energy requirements at the entire treatment facility were tracked daily by total natural-gas use. Best-fit correlations between treated water and distillate production vs. total plant use of natural gas indicated that there was a base power load throughout the facility of approximately 120 to 140 Mscf/D (3400 to 3960 m3/d) of gas. Approximately 48 scf natural gas/bbl influent water treated (270 m3/m3 influent) or 60.5 scf/bbl distillate produced (340 m3/m3 distillate) was required; this represents an energy cost of less than USD 0.25/bbl treated (USD 0.04/m3 treated) and approximately USD 0.30/bbl of distillate product generated (USD 0.048/m3 distillate), assuming a natural-gas cost of USD 5/million Btu (USD 4.72/GJ). Performance in terms of water recovery and product-water quality was stable throughout the 60-day test.","PeriodicalId":19446,"journal":{"name":"Oil and gas facilities","volume":"1217 1","pages":"54-62"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Mechanical Vapor Recompression for the Treatment of Shale-Gas Flowback Water\",\"authors\":\"T. Hayes, Brent Halldorson, P. Horner, J. Ewing, James R. Werline, B. F. Severin\",\"doi\":\"10.2118/170247-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Used extensively by the food, chemical, and pharmaceutical industries, the mechanical-vapor-recompression (MVR) process is viewed as a reliable method for recovering demineralized water from concentrated brines. Devon Energy has supported the operation of an advanced MVR system at a north-central Texas (Barnett shale region) treatment facility. At this facility, pretreatment included caustic addition and clarification for total-suspended-solids and iron control. Pretreated shale-gas flowback water was then sent to three MVR units, each rated at 2,000–2,500 B/D (318–398 m3/d). Data were collected during a 60-day period in the summer of 2010. Distilled-water recovery volume averaged 72.5% of the influent water to the MVR units. The influent total dissolved solids (TDS) fed to the MVR units averaged just under 50 000 mg/L. More than 99% of the TDS were captured in the concentrate stream. The fate of multivalent cations; total petroleum hydrocarbons (TPH); and benzene, toluene, ethylbenzene, and xylenes (BTEX) throughout the treatment system was determined. Most of the iron and TPH removal (90 and 84%, respectively) occurred during pretreatment. The total removal of iron, magnesium, calcium, barium, and boron from the distillate exceeded 99%. BTEX removal from the distillate exceeded 95%. Electric power at the facility was provided by two natural-gas generators, and compressors associated with the MVR units were driven by natural-gas-fueled internal-combustion engines. Energy requirements at the entire treatment facility were tracked daily by total natural-gas use. Best-fit correlations between treated water and distillate production vs. total plant use of natural gas indicated that there was a base power load throughout the facility of approximately 120 to 140 Mscf/D (3400 to 3960 m3/d) of gas. Approximately 48 scf natural gas/bbl influent water treated (270 m3/m3 influent) or 60.5 scf/bbl distillate produced (340 m3/m3 distillate) was required; this represents an energy cost of less than USD 0.25/bbl treated (USD 0.04/m3 treated) and approximately USD 0.30/bbl of distillate product generated (USD 0.048/m3 distillate), assuming a natural-gas cost of USD 5/million Btu (USD 4.72/GJ). Performance in terms of water recovery and product-water quality was stable throughout the 60-day test.\",\"PeriodicalId\":19446,\"journal\":{\"name\":\"Oil and gas facilities\",\"volume\":\"1217 1\",\"pages\":\"54-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil and gas facilities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/170247-PA\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil and gas facilities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/170247-PA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical Vapor Recompression for the Treatment of Shale-Gas Flowback Water
Summary Used extensively by the food, chemical, and pharmaceutical industries, the mechanical-vapor-recompression (MVR) process is viewed as a reliable method for recovering demineralized water from concentrated brines. Devon Energy has supported the operation of an advanced MVR system at a north-central Texas (Barnett shale region) treatment facility. At this facility, pretreatment included caustic addition and clarification for total-suspended-solids and iron control. Pretreated shale-gas flowback water was then sent to three MVR units, each rated at 2,000–2,500 B/D (318–398 m3/d). Data were collected during a 60-day period in the summer of 2010. Distilled-water recovery volume averaged 72.5% of the influent water to the MVR units. The influent total dissolved solids (TDS) fed to the MVR units averaged just under 50 000 mg/L. More than 99% of the TDS were captured in the concentrate stream. The fate of multivalent cations; total petroleum hydrocarbons (TPH); and benzene, toluene, ethylbenzene, and xylenes (BTEX) throughout the treatment system was determined. Most of the iron and TPH removal (90 and 84%, respectively) occurred during pretreatment. The total removal of iron, magnesium, calcium, barium, and boron from the distillate exceeded 99%. BTEX removal from the distillate exceeded 95%. Electric power at the facility was provided by two natural-gas generators, and compressors associated with the MVR units were driven by natural-gas-fueled internal-combustion engines. Energy requirements at the entire treatment facility were tracked daily by total natural-gas use. Best-fit correlations between treated water and distillate production vs. total plant use of natural gas indicated that there was a base power load throughout the facility of approximately 120 to 140 Mscf/D (3400 to 3960 m3/d) of gas. Approximately 48 scf natural gas/bbl influent water treated (270 m3/m3 influent) or 60.5 scf/bbl distillate produced (340 m3/m3 distillate) was required; this represents an energy cost of less than USD 0.25/bbl treated (USD 0.04/m3 treated) and approximately USD 0.30/bbl of distillate product generated (USD 0.048/m3 distillate), assuming a natural-gas cost of USD 5/million Btu (USD 4.72/GJ). Performance in terms of water recovery and product-water quality was stable throughout the 60-day test.