基于nmf的无约束环境下虹膜图像分割改进方法

A. Santoso, Shabrina Choirunnisa, Bima Prihasto, Jia-Ching Wang
{"title":"基于nmf的无约束环境下虹膜图像分割改进方法","authors":"A. Santoso, Shabrina Choirunnisa, Bima Prihasto, Jia-Ching Wang","doi":"10.1109/ICCE-TW.2016.7521046","DOIUrl":null,"url":null,"abstract":"Nowadays the segmentation task becomes an important pre-processing stage for the iris classification system. The earlier works in the iris classification field demonstrate a promising result when the classification is performed under an ideal environment. However, the reduction of accuracy is observed when the iris images are captured in non-ideal circumstances. This work is based on the previous work that propose iris segmentation system with ί-Means clustering algorithm. In this work, we evaluate the performance of NMF-based clustering approach to replace the ί-Means algorithm. The iris images from UBIRIS dataset are used to verify the reliability of our work to perform iris region extraction in the unconstrained environments.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"43 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improving iris image segmentation in unconstrained environments using NMF-based approach\",\"authors\":\"A. Santoso, Shabrina Choirunnisa, Bima Prihasto, Jia-Ching Wang\",\"doi\":\"10.1109/ICCE-TW.2016.7521046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays the segmentation task becomes an important pre-processing stage for the iris classification system. The earlier works in the iris classification field demonstrate a promising result when the classification is performed under an ideal environment. However, the reduction of accuracy is observed when the iris images are captured in non-ideal circumstances. This work is based on the previous work that propose iris segmentation system with ί-Means clustering algorithm. In this work, we evaluate the performance of NMF-based clustering approach to replace the ί-Means algorithm. The iris images from UBIRIS dataset are used to verify the reliability of our work to perform iris region extraction in the unconstrained environments.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"43 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7521046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7521046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

目前,分割任务已成为虹膜分类系统的一个重要预处理阶段。在虹膜分类领域的早期工作表明,在理想的环境下进行分类是有希望的。然而,当虹膜图像在非理想情况下捕获时,观察到准确性的降低。本工作是在前人提出的基于末梢-均值聚类算法的虹膜分割系统的基础上进行的。在这项工作中,我们评估了基于nmf的聚类方法的性能,以取代末梢-均值算法。利用UBIRIS数据集的虹膜图像验证了我们在无约束环境下进行虹膜区域提取的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving iris image segmentation in unconstrained environments using NMF-based approach
Nowadays the segmentation task becomes an important pre-processing stage for the iris classification system. The earlier works in the iris classification field demonstrate a promising result when the classification is performed under an ideal environment. However, the reduction of accuracy is observed when the iris images are captured in non-ideal circumstances. This work is based on the previous work that propose iris segmentation system with ί-Means clustering algorithm. In this work, we evaluate the performance of NMF-based clustering approach to replace the ί-Means algorithm. The iris images from UBIRIS dataset are used to verify the reliability of our work to perform iris region extraction in the unconstrained environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信