基于计算机愿景的非破坏性分解系统确定菠萝果实的成份

Nevalen Aginda Prasetyo, Arif Surtono, J. Junaidi, Gurum Ahmad Pauzi
{"title":"基于计算机愿景的非破坏性分解系统确定菠萝果实的成份","authors":"Nevalen Aginda Prasetyo, Arif Surtono, J. Junaidi, Gurum Ahmad Pauzi","doi":"10.23960/jemit.v2i1.26","DOIUrl":null,"url":null,"abstract":"A computer vision-based non-destructive pineapple maturity level identification system has been realized. This research was conducted to create a system capable of identifying six indexes of pineapple maturity level. An artificial neural network is used as a classifier for the level of maturity pineapples. Artificial neural network input is a statistical parameter consisting of mean, standard deviation, variance, kurtosis, and skewness of RGB and HSV color models pineapple images. Statistical parameters of the color model with a Pearson correlation value greater than 0.5 were used to characterize pineapple images. A total of 360 pineapple images were used in the training process with a percentage of 75% of training data and 25% of validation data. An image segmentation process is applied to separate the pineapple image from the image background. The result of this research is a pineapple maturity level identification system consisting of software and hardware which is able to identify six indexes of pineapple maturity level with average accuracy value of 98,4%.","PeriodicalId":15738,"journal":{"name":"Journal of Energy, Material, and Instrumentation Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistem Identifikasi Tingkat Kematangan Buah Nanas Secara Non-Destruktif Berbasis Computer Vision\",\"authors\":\"Nevalen Aginda Prasetyo, Arif Surtono, J. Junaidi, Gurum Ahmad Pauzi\",\"doi\":\"10.23960/jemit.v2i1.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computer vision-based non-destructive pineapple maturity level identification system has been realized. This research was conducted to create a system capable of identifying six indexes of pineapple maturity level. An artificial neural network is used as a classifier for the level of maturity pineapples. Artificial neural network input is a statistical parameter consisting of mean, standard deviation, variance, kurtosis, and skewness of RGB and HSV color models pineapple images. Statistical parameters of the color model with a Pearson correlation value greater than 0.5 were used to characterize pineapple images. A total of 360 pineapple images were used in the training process with a percentage of 75% of training data and 25% of validation data. An image segmentation process is applied to separate the pineapple image from the image background. The result of this research is a pineapple maturity level identification system consisting of software and hardware which is able to identify six indexes of pineapple maturity level with average accuracy value of 98,4%.\",\"PeriodicalId\":15738,\"journal\":{\"name\":\"Journal of Energy, Material, and Instrumentation Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy, Material, and Instrumentation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23960/jemit.v2i1.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy, Material, and Instrumentation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23960/jemit.v2i1.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实现了一种基于计算机视觉的菠萝成熟度无损识别系统。本研究旨在建立一个能够识别菠萝成熟度的六项指标的体系。采用人工神经网络作为菠萝成熟程度的分类器。人工神经网络输入是由RGB和HSV颜色模型菠萝图像的均值、标准差、方差、峰度和偏度组成的统计参数。使用Pearson相关值大于0.5的颜色模型统计参数对菠萝图像进行表征。训练过程中使用了360张菠萝图像,训练数据占75%,验证数据占25%。应用图像分割过程将菠萝图像从图像背景中分离出来。本研究的结果是一个由软件和硬件组成的菠萝成熟度识别系统,该系统能够识别菠萝成熟度的6个指标,平均准确率为98.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sistem Identifikasi Tingkat Kematangan Buah Nanas Secara Non-Destruktif Berbasis Computer Vision
A computer vision-based non-destructive pineapple maturity level identification system has been realized. This research was conducted to create a system capable of identifying six indexes of pineapple maturity level. An artificial neural network is used as a classifier for the level of maturity pineapples. Artificial neural network input is a statistical parameter consisting of mean, standard deviation, variance, kurtosis, and skewness of RGB and HSV color models pineapple images. Statistical parameters of the color model with a Pearson correlation value greater than 0.5 were used to characterize pineapple images. A total of 360 pineapple images were used in the training process with a percentage of 75% of training data and 25% of validation data. An image segmentation process is applied to separate the pineapple image from the image background. The result of this research is a pineapple maturity level identification system consisting of software and hardware which is able to identify six indexes of pineapple maturity level with average accuracy value of 98,4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信