{"title":"长彩虹数列","authors":"J. Balogh, William Linz, Leticia Mattos","doi":"10.4310/joc.2021.v12.n3.a6","DOIUrl":null,"url":null,"abstract":"Define $T_k$ as the minimal $t\\in \\mathbb{N}$ for which there is a rainbow arithmetic progression of length $k$ in every equinumerous $t$-coloring of $[tn]$ for all $n\\in \\mathbb{N}$. Jungic, Licht (Fox), Mahdian, Nesetril and Radoicic proved that $\\lfloor{\\frac{k^2}{4}\\rfloor}\\le T_k$. We almost close the gap between the upper and lower bounds by proving that $T_k \\le k^2e^{(\\ln\\ln k)^2(1+o(1))}$. Conlon, Fox and Sudakov have independently shown a stronger statement that $T_k=O(k^2\\log k)$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Long rainbow arithmetic progressions\",\"authors\":\"J. Balogh, William Linz, Leticia Mattos\",\"doi\":\"10.4310/joc.2021.v12.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Define $T_k$ as the minimal $t\\\\in \\\\mathbb{N}$ for which there is a rainbow arithmetic progression of length $k$ in every equinumerous $t$-coloring of $[tn]$ for all $n\\\\in \\\\mathbb{N}$. Jungic, Licht (Fox), Mahdian, Nesetril and Radoicic proved that $\\\\lfloor{\\\\frac{k^2}{4}\\\\rfloor}\\\\le T_k$. We almost close the gap between the upper and lower bounds by proving that $T_k \\\\le k^2e^{(\\\\ln\\\\ln k)^2(1+o(1))}$. Conlon, Fox and Sudakov have independently shown a stronger statement that $T_k=O(k^2\\\\log k)$.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2021.v12.n3.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n3.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Define $T_k$ as the minimal $t\in \mathbb{N}$ for which there is a rainbow arithmetic progression of length $k$ in every equinumerous $t$-coloring of $[tn]$ for all $n\in \mathbb{N}$. Jungic, Licht (Fox), Mahdian, Nesetril and Radoicic proved that $\lfloor{\frac{k^2}{4}\rfloor}\le T_k$. We almost close the gap between the upper and lower bounds by proving that $T_k \le k^2e^{(\ln\ln k)^2(1+o(1))}$. Conlon, Fox and Sudakov have independently shown a stronger statement that $T_k=O(k^2\log k)$.