基于修剪方法的人工神经网络结构优化

J. Cigánek, J. Osuský
{"title":"基于修剪方法的人工神经网络结构优化","authors":"J. Cigánek, J. Osuský","doi":"10.1109/CYBERI.2018.8337554","DOIUrl":null,"url":null,"abstract":"The presented paper deals with two pruning algorithms used for structure optimization of artificial neural networks. These networks will be used for modeling of nonlinear dynamic systems. The quality of proposed algorithms will be verified and compared on the real data of the steam turbine in thermal power plant. Totally, four different models will be created to cover the behavior of selected real system: a neural network model, an adaptive neuro-fuzzy model and two models of optimized neural networks using Optimal Brain Damage and Optimal Brain Surgeon algorithms.","PeriodicalId":6534,"journal":{"name":"2018 Cybernetics & Informatics (K&I)","volume":"27 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure optimization of artificial neural networks using pruning methods\",\"authors\":\"J. Cigánek, J. Osuský\",\"doi\":\"10.1109/CYBERI.2018.8337554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presented paper deals with two pruning algorithms used for structure optimization of artificial neural networks. These networks will be used for modeling of nonlinear dynamic systems. The quality of proposed algorithms will be verified and compared on the real data of the steam turbine in thermal power plant. Totally, four different models will be created to cover the behavior of selected real system: a neural network model, an adaptive neuro-fuzzy model and two models of optimized neural networks using Optimal Brain Damage and Optimal Brain Surgeon algorithms.\",\"PeriodicalId\":6534,\"journal\":{\"name\":\"2018 Cybernetics & Informatics (K&I)\",\"volume\":\"27 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Cybernetics & Informatics (K&I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERI.2018.8337554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Cybernetics & Informatics (K&I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERI.2018.8337554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了用于人工神经网络结构优化的两种剪枝算法。这些网络将用于非线性动态系统的建模。本文将在热电厂汽轮机的实际数据上对所提出算法的质量进行验证和比较。总共将创建四种不同的模型来覆盖选定的真实系统的行为:一个神经网络模型,一个自适应神经模糊模型和两个优化的神经网络模型,使用最优脑损伤和最优脑外科医生算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure optimization of artificial neural networks using pruning methods
The presented paper deals with two pruning algorithms used for structure optimization of artificial neural networks. These networks will be used for modeling of nonlinear dynamic systems. The quality of proposed algorithms will be verified and compared on the real data of the steam turbine in thermal power plant. Totally, four different models will be created to cover the behavior of selected real system: a neural network model, an adaptive neuro-fuzzy model and two models of optimized neural networks using Optimal Brain Damage and Optimal Brain Surgeon algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信