偏置椭圆滑动轴承在动载荷和失位作用下的瞬态分析

IF 1.6 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Kai Wang, Lihua Yang, Haoze Wang, Xilong Ji, Kaidi Zhu
{"title":"偏置椭圆滑动轴承在动载荷和失位作用下的瞬态分析","authors":"Kai Wang, Lihua Yang, Haoze Wang, Xilong Ji, Kaidi Zhu","doi":"10.1177/13506501231163920","DOIUrl":null,"url":null,"abstract":"Although the offset-elliptical journal bearings (OEJBs) are widely used in industry, there are few researches on the OEJBs, especially under the conditions of journal misalignment and sudden load. To overcome such deficiency, the dynamic response of misaligned OEJBs subjected to the dynamic load has been studied in this paper. Based on the Reynolds equation, Euler equation, and kinetic equations, a hydrodynamic model is developed and validated to conduct the transient analysis for the OEJBs. Moreover, the modified film thickness of the misaligned OEJB is given. The partial derivative method and the finite difference method are adopted to solve the lubrication equations. The correlations of bearing characteristics such as the minimum film thickness, maximum film pressure, journal orbits, and time-varying dynamic coefficients with the misalignment and dynamic load are studied. In addition, the effects of the misalignment, rotating speed, and clearance ratio on the transient performance of OEJBs under the dynamic load are discussed in detail. The results indicate that the journal misalignment and dynamic load have a significant impact on the transient performance of OEJBs. The decrease of the film thickness caused by the journal misalignment can be aggravated by the suddenly applied load. The proposed model can provide theoretical fundament in the design and monitoring of the dynamically loaded bearing-rotor system.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"os-11 1","pages":"1511 - 1531"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transient analysis for offset-elliptical journal bearings under misalignment and dynamic loading\",\"authors\":\"Kai Wang, Lihua Yang, Haoze Wang, Xilong Ji, Kaidi Zhu\",\"doi\":\"10.1177/13506501231163920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the offset-elliptical journal bearings (OEJBs) are widely used in industry, there are few researches on the OEJBs, especially under the conditions of journal misalignment and sudden load. To overcome such deficiency, the dynamic response of misaligned OEJBs subjected to the dynamic load has been studied in this paper. Based on the Reynolds equation, Euler equation, and kinetic equations, a hydrodynamic model is developed and validated to conduct the transient analysis for the OEJBs. Moreover, the modified film thickness of the misaligned OEJB is given. The partial derivative method and the finite difference method are adopted to solve the lubrication equations. The correlations of bearing characteristics such as the minimum film thickness, maximum film pressure, journal orbits, and time-varying dynamic coefficients with the misalignment and dynamic load are studied. In addition, the effects of the misalignment, rotating speed, and clearance ratio on the transient performance of OEJBs under the dynamic load are discussed in detail. The results indicate that the journal misalignment and dynamic load have a significant impact on the transient performance of OEJBs. The decrease of the film thickness caused by the journal misalignment can be aggravated by the suddenly applied load. The proposed model can provide theoretical fundament in the design and monitoring of the dynamically loaded bearing-rotor system.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"os-11 1\",\"pages\":\"1511 - 1531\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231163920\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231163920","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4

摘要

虽然偏置椭圆轴颈轴承在工业上得到了广泛的应用,但对其进行的研究却很少,特别是在轴颈错位和突然载荷的情况下。为了克服这一缺陷,本文研究了不对准oejb在动载荷作用下的动力响应。在Reynolds方程、Euler方程和动力学方程的基础上,建立了流体动力学模型,并对其进行了验证。此外,还给出了错位OEJB的修正膜厚。采用偏导数法和有限差分法求解润滑方程。研究了最小油膜厚度、最大油膜压力、轴颈轨迹、时变动力系数等轴承特性与轴向偏差和动载荷的相关性。此外,还详细讨论了在动载荷作用下,轴向误差、转速和间隙比等因素对轴向轴的瞬态性能的影响。结果表明,轴颈错位和动载荷对oejb的瞬态性能有显著影响。由于轴颈错位引起的膜厚下降会因突然施加的载荷而加剧。该模型可为动载轴承-转子系统的设计和监测提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient analysis for offset-elliptical journal bearings under misalignment and dynamic loading
Although the offset-elliptical journal bearings (OEJBs) are widely used in industry, there are few researches on the OEJBs, especially under the conditions of journal misalignment and sudden load. To overcome such deficiency, the dynamic response of misaligned OEJBs subjected to the dynamic load has been studied in this paper. Based on the Reynolds equation, Euler equation, and kinetic equations, a hydrodynamic model is developed and validated to conduct the transient analysis for the OEJBs. Moreover, the modified film thickness of the misaligned OEJB is given. The partial derivative method and the finite difference method are adopted to solve the lubrication equations. The correlations of bearing characteristics such as the minimum film thickness, maximum film pressure, journal orbits, and time-varying dynamic coefficients with the misalignment and dynamic load are studied. In addition, the effects of the misalignment, rotating speed, and clearance ratio on the transient performance of OEJBs under the dynamic load are discussed in detail. The results indicate that the journal misalignment and dynamic load have a significant impact on the transient performance of OEJBs. The decrease of the film thickness caused by the journal misalignment can be aggravated by the suddenly applied load. The proposed model can provide theoretical fundament in the design and monitoring of the dynamically loaded bearing-rotor system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信