M. Haragus, Mathew A. Johnson, Wesley R. Perkins, B. D. Rijk
{"title":"谱稳定Lugiato-Lefever周期波的非线性调制动力学","authors":"M. Haragus, Mathew A. Johnson, Wesley R. Perkins, B. D. Rijk","doi":"10.4171/aihpc/65","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear stability of spectrally stable periodic waves in the Lugiato-Lefever equation (LLE), a damped nonlinear Schr\\\"odinger equation with forcing that arises in nonlinear optics. So far, nonlinear stability of such solutions has only been established against co-periodic perturbations by exploiting the existence of a spectral gap. In this paper, we consider perturbations which are localized, i.e., integrable on the line. Such localized perturbations naturally yield the absence of a spectral gap, so we must rely on a substantially different method with origins in the stability analysis of periodic waves in reaction-diffusion systems. The relevant linear estimates have been obtained in recent work by the first three authors through a delicate decomposition of the associated linearized solution operator. Since its most critical part just decays diffusively, the nonlinear iteration can only be closed if one allows for a spatio-temporal phase modulation. However, the modulated perturbation satisfies a quasilinear equation yielding an apparent loss of regularity. To overcome this obstacle, we incorporate tame estimates on the unmodulated perturbation, which satisfies a semilinear equation in which no derivatives are lost, yet where decay is too slow to close an independent iteration scheme. We obtain nonlinear stability of periodic steady waves in the LLE against localized perturbations with precisely the same decay rates as predicted by the linear theory.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nonlinear modulational dynamics of spectrally stable Lugiato–Lefever periodic waves\",\"authors\":\"M. Haragus, Mathew A. Johnson, Wesley R. Perkins, B. D. Rijk\",\"doi\":\"10.4171/aihpc/65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonlinear stability of spectrally stable periodic waves in the Lugiato-Lefever equation (LLE), a damped nonlinear Schr\\\\\\\"odinger equation with forcing that arises in nonlinear optics. So far, nonlinear stability of such solutions has only been established against co-periodic perturbations by exploiting the existence of a spectral gap. In this paper, we consider perturbations which are localized, i.e., integrable on the line. Such localized perturbations naturally yield the absence of a spectral gap, so we must rely on a substantially different method with origins in the stability analysis of periodic waves in reaction-diffusion systems. The relevant linear estimates have been obtained in recent work by the first three authors through a delicate decomposition of the associated linearized solution operator. Since its most critical part just decays diffusively, the nonlinear iteration can only be closed if one allows for a spatio-temporal phase modulation. However, the modulated perturbation satisfies a quasilinear equation yielding an apparent loss of regularity. To overcome this obstacle, we incorporate tame estimates on the unmodulated perturbation, which satisfies a semilinear equation in which no derivatives are lost, yet where decay is too slow to close an independent iteration scheme. We obtain nonlinear stability of periodic steady waves in the LLE against localized perturbations with precisely the same decay rates as predicted by the linear theory.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/65\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/65","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonlinear modulational dynamics of spectrally stable Lugiato–Lefever periodic waves
We consider the nonlinear stability of spectrally stable periodic waves in the Lugiato-Lefever equation (LLE), a damped nonlinear Schr\"odinger equation with forcing that arises in nonlinear optics. So far, nonlinear stability of such solutions has only been established against co-periodic perturbations by exploiting the existence of a spectral gap. In this paper, we consider perturbations which are localized, i.e., integrable on the line. Such localized perturbations naturally yield the absence of a spectral gap, so we must rely on a substantially different method with origins in the stability analysis of periodic waves in reaction-diffusion systems. The relevant linear estimates have been obtained in recent work by the first three authors through a delicate decomposition of the associated linearized solution operator. Since its most critical part just decays diffusively, the nonlinear iteration can only be closed if one allows for a spatio-temporal phase modulation. However, the modulated perturbation satisfies a quasilinear equation yielding an apparent loss of regularity. To overcome this obstacle, we incorporate tame estimates on the unmodulated perturbation, which satisfies a semilinear equation in which no derivatives are lost, yet where decay is too slow to close an independent iteration scheme. We obtain nonlinear stability of periodic steady waves in the LLE against localized perturbations with precisely the same decay rates as predicted by the linear theory.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.