线性预测分析中的窗口优化

W. Chu
{"title":"线性预测分析中的窗口优化","authors":"W. Chu","doi":"10.1109/TSA.2003.818213","DOIUrl":null,"url":null,"abstract":"The autocorrelation method of linear prediction (LP) analysis relies on a window for data extraction. We propose an approach to optimize the window which is based on gradient-descent. It is shown that the optimized window can enhance the performance of LP-based speech coding algorithms; in most instances, improvement in performance comes at no additional computational cost, since it merely requires a window replacement.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"24 1","pages":"626-635"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Window optimization in linear prediction analysis\",\"authors\":\"W. Chu\",\"doi\":\"10.1109/TSA.2003.818213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The autocorrelation method of linear prediction (LP) analysis relies on a window for data extraction. We propose an approach to optimize the window which is based on gradient-descent. It is shown that the optimized window can enhance the performance of LP-based speech coding algorithms; in most instances, improvement in performance comes at no additional computational cost, since it merely requires a window replacement.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"24 1\",\"pages\":\"626-635\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.818213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.818213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

线性预测(LP)分析的自相关方法依赖于一个窗口进行数据提取。提出了一种基于梯度下降的窗口优化方法。结果表明,优化后的窗口可以提高基于lp的语音编码算法的性能;在大多数情况下,性能的提高不需要额外的计算成本,因为它只需要替换一个窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Window optimization in linear prediction analysis
The autocorrelation method of linear prediction (LP) analysis relies on a window for data extraction. We propose an approach to optimize the window which is based on gradient-descent. It is shown that the optimized window can enhance the performance of LP-based speech coding algorithms; in most instances, improvement in performance comes at no additional computational cost, since it merely requires a window replacement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信