考虑旋转储备不确定性的机组承诺内频率储备

Mahdi Rouholamini, M. Rashidinejad, A. Abdollahi, H. Ghasemnejad
{"title":"考虑旋转储备不确定性的机组承诺内频率储备","authors":"Mahdi Rouholamini, M. Rashidinejad, A. Abdollahi, H. Ghasemnejad","doi":"10.5923/J.IJEE.20120204.10","DOIUrl":null,"url":null,"abstract":"Various technical limitations of generating units and ancillary services requirements have more complicated the power generation control and operation. This paper introduces a novel methodology for day-ahead unit commitment, which is a crucial challenge in restructured power systems, considering primary frequency control reserve. In addition, also spinning reserve uncertainty as a practical constraint has been taken into account. In this paper, we formulate and solve simultaneous scheduling of energy and primary reserve as a mixed integer non linear programming problem that simultaneously accounts aforementioned constraints. In proposed formulation, system frequency is allowed to fall from nominal value to a critical specified limit. Finally, the proposed approach is implemented to the scheduling of a 17-unit isolated power system over 24-hours. Case studies and numerical results present significant outcomes and verify the robustness of the proposed method, while it creates a schedule consistent with the primary frequency control and spinning reserve uncertainty.","PeriodicalId":14041,"journal":{"name":"International journal of energy engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Frequency Reserve Within Unit Commitment Considering Spinning Reserve Uncertainty\",\"authors\":\"Mahdi Rouholamini, M. Rashidinejad, A. Abdollahi, H. Ghasemnejad\",\"doi\":\"10.5923/J.IJEE.20120204.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various technical limitations of generating units and ancillary services requirements have more complicated the power generation control and operation. This paper introduces a novel methodology for day-ahead unit commitment, which is a crucial challenge in restructured power systems, considering primary frequency control reserve. In addition, also spinning reserve uncertainty as a practical constraint has been taken into account. In this paper, we formulate and solve simultaneous scheduling of energy and primary reserve as a mixed integer non linear programming problem that simultaneously accounts aforementioned constraints. In proposed formulation, system frequency is allowed to fall from nominal value to a critical specified limit. Finally, the proposed approach is implemented to the scheduling of a 17-unit isolated power system over 24-hours. Case studies and numerical results present significant outcomes and verify the robustness of the proposed method, while it creates a schedule consistent with the primary frequency control and spinning reserve uncertainty.\",\"PeriodicalId\":14041,\"journal\":{\"name\":\"International journal of energy engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of energy engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.IJEE.20120204.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of energy engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.IJEE.20120204.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

发电机组的各种技术限制和辅助服务要求使发电控制和运行更加复杂。本文介绍了一种考虑一次频控储备的发电机组日前调度新方法。此外,还考虑了旋转储备不确定性作为一种实际约束。本文将能源与初级储备同时调度问题表述为同时考虑上述约束条件的混合整数非线性规划问题并加以求解。在建议的公式中,允许系统频率从标称值下降到临界指定限值。最后,将该方法应用于17台隔离电力系统的24小时调度。实例研究和数值结果验证了该方法的鲁棒性,同时建立了与主频率控制和旋转储备不确定性相一致的调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Reserve Within Unit Commitment Considering Spinning Reserve Uncertainty
Various technical limitations of generating units and ancillary services requirements have more complicated the power generation control and operation. This paper introduces a novel methodology for day-ahead unit commitment, which is a crucial challenge in restructured power systems, considering primary frequency control reserve. In addition, also spinning reserve uncertainty as a practical constraint has been taken into account. In this paper, we formulate and solve simultaneous scheduling of energy and primary reserve as a mixed integer non linear programming problem that simultaneously accounts aforementioned constraints. In proposed formulation, system frequency is allowed to fall from nominal value to a critical specified limit. Finally, the proposed approach is implemented to the scheduling of a 17-unit isolated power system over 24-hours. Case studies and numerical results present significant outcomes and verify the robustness of the proposed method, while it creates a schedule consistent with the primary frequency control and spinning reserve uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信