Ernestine Großmann, J. Sauer, Christian Schulz, Patrick Steil
{"title":"弧形标志满足基于出行的公共交通路线","authors":"Ernestine Großmann, J. Sauer, Christian Schulz, Patrick Steil","doi":"10.48550/arXiv.2302.07168","DOIUrl":null,"url":null,"abstract":"We present Arc-Flag TB, a journey planning algorithm for public transit networks which combines Trip-Based Public Transit Routing (TB) with the Arc-Flags speedup technique. Compared to previous attempts to apply Arc-Flags to public transit networks, which saw limited success, our approach uses stronger pruning rules to reduce the search space. Our experiments show that Arc-Flag TB achieves a speedup of up to two orders of magnitude over TB, offering query times of less than a millisecond even on large countrywide networks. Compared to the state-of-the-art speedup technique Trip-Based Public Transit Routing Using Condensed Search Trees (TB-CST), our algorithm achieves similar query times but requires significantly less additional memory. Other state-of-the-art algorithms which achieve even faster query times, e.g., Public Transit Labeling, require enormous memory usage. In contrast, Arc-Flag TB offers a tradeoff between query performance and memory usage due to the fact that the number of regions in the network partition required by our algorithm is a configurable parameter. We also identify an issue in the transfer precomputation of TB that affects both TB-CST and Arc-Flag TB, leading to incorrect answers for some queries. This has not been previously recognized by the author of TB-CST. We provide discussion on how to resolve this issue in the future. Currently, Arc-Flag TB answers 1-6% of queries incorrectly, compared to over 20% for TB-CST on some networks.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"222 1","pages":"16:1-16:18"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arc-Flags Meet Trip-Based Public Transit Routing\",\"authors\":\"Ernestine Großmann, J. Sauer, Christian Schulz, Patrick Steil\",\"doi\":\"10.48550/arXiv.2302.07168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Arc-Flag TB, a journey planning algorithm for public transit networks which combines Trip-Based Public Transit Routing (TB) with the Arc-Flags speedup technique. Compared to previous attempts to apply Arc-Flags to public transit networks, which saw limited success, our approach uses stronger pruning rules to reduce the search space. Our experiments show that Arc-Flag TB achieves a speedup of up to two orders of magnitude over TB, offering query times of less than a millisecond even on large countrywide networks. Compared to the state-of-the-art speedup technique Trip-Based Public Transit Routing Using Condensed Search Trees (TB-CST), our algorithm achieves similar query times but requires significantly less additional memory. Other state-of-the-art algorithms which achieve even faster query times, e.g., Public Transit Labeling, require enormous memory usage. In contrast, Arc-Flag TB offers a tradeoff between query performance and memory usage due to the fact that the number of regions in the network partition required by our algorithm is a configurable parameter. We also identify an issue in the transfer precomputation of TB that affects both TB-CST and Arc-Flag TB, leading to incorrect answers for some queries. This has not been previously recognized by the author of TB-CST. We provide discussion on how to resolve this issue in the future. Currently, Arc-Flag TB answers 1-6% of queries incorrectly, compared to over 20% for TB-CST on some networks.\",\"PeriodicalId\":9448,\"journal\":{\"name\":\"Bulletin of the Society of Sea Water Science, Japan\",\"volume\":\"222 1\",\"pages\":\"16:1-16:18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Society of Sea Water Science, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.07168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.07168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present Arc-Flag TB, a journey planning algorithm for public transit networks which combines Trip-Based Public Transit Routing (TB) with the Arc-Flags speedup technique. Compared to previous attempts to apply Arc-Flags to public transit networks, which saw limited success, our approach uses stronger pruning rules to reduce the search space. Our experiments show that Arc-Flag TB achieves a speedup of up to two orders of magnitude over TB, offering query times of less than a millisecond even on large countrywide networks. Compared to the state-of-the-art speedup technique Trip-Based Public Transit Routing Using Condensed Search Trees (TB-CST), our algorithm achieves similar query times but requires significantly less additional memory. Other state-of-the-art algorithms which achieve even faster query times, e.g., Public Transit Labeling, require enormous memory usage. In contrast, Arc-Flag TB offers a tradeoff between query performance and memory usage due to the fact that the number of regions in the network partition required by our algorithm is a configurable parameter. We also identify an issue in the transfer precomputation of TB that affects both TB-CST and Arc-Flag TB, leading to incorrect answers for some queries. This has not been previously recognized by the author of TB-CST. We provide discussion on how to resolve this issue in the future. Currently, Arc-Flag TB answers 1-6% of queries incorrectly, compared to over 20% for TB-CST on some networks.