Assaf Ben-Yishai, Young-Han Kim, Or Ordentlich, O. Shayevitz
{"title":"二元对称信道的交互容量至少是香农容量的1/40","authors":"Assaf Ben-Yishai, Young-Han Kim, Or Ordentlich, O. Shayevitz","doi":"10.1109/ISIT.2019.8849655","DOIUrl":null,"url":null,"abstract":"We define the interactive capacity of the binary symmetric channel (BSC) as the maximal rate for which any interactive protocol can be fully and reliably simulated over a pair of BSC’s. We show that this quantity is at least 1/40 of the BSC Shannon capacity, uniformly for all channel crossover probabilities. Our result is based on a public-coin rewind-if-error coding scheme in the spirit of Kol & Raz 2013 [1].","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"156 1","pages":"2868-2872"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Interactive Capacity of the Binary Symmetric Channel is at Least 1/40 the Shannon Capacity\",\"authors\":\"Assaf Ben-Yishai, Young-Han Kim, Or Ordentlich, O. Shayevitz\",\"doi\":\"10.1109/ISIT.2019.8849655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the interactive capacity of the binary symmetric channel (BSC) as the maximal rate for which any interactive protocol can be fully and reliably simulated over a pair of BSC’s. We show that this quantity is at least 1/40 of the BSC Shannon capacity, uniformly for all channel crossover probabilities. Our result is based on a public-coin rewind-if-error coding scheme in the spirit of Kol & Raz 2013 [1].\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"156 1\",\"pages\":\"2868-2872\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
我们将二进制对称信道(BSC)的交互容量定义为在一对BSC上能够完全可靠地模拟任何交互协议的最大速率。我们表明,这个数量至少是BSC香农容量的1/40,对于所有信道交叉概率都是一致的。我们的结果基于Kol & Raz 2013[1]精神的公共硬币倒带错误编码方案。
The Interactive Capacity of the Binary Symmetric Channel is at Least 1/40 the Shannon Capacity
We define the interactive capacity of the binary symmetric channel (BSC) as the maximal rate for which any interactive protocol can be fully and reliably simulated over a pair of BSC’s. We show that this quantity is at least 1/40 of the BSC Shannon capacity, uniformly for all channel crossover probabilities. Our result is based on a public-coin rewind-if-error coding scheme in the spirit of Kol & Raz 2013 [1].