幂指数型全函数模中弱可定位子模的$2$-一般性及实轴上的多项式增长

IF 0.5 Q3 MATHEMATICS
N. Abuzyarova
{"title":"幂指数型全函数模中弱可定位子模的$2$-一般性及实轴上的多项式增长","authors":"N. Abuzyarova","doi":"10.13108/2016-8-3-8","DOIUrl":null,"url":null,"abstract":"In the work we consider a topological module P(a; b) of entire functions, which is the isomorphic image under the Fourier-Laplace transform of the Schwarz space of distributions with compact supports in a finite or infinite interval (a; b) ⊂ R. We prove that each weakly localizable module in P(a; b) is either generated by its two elements or is equal to the closure of two submodules of special form. We also provide dual results on subspaces in C∞(a; b) invariant w.r.t. the differentiation operator.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"82 1","pages":"8-21"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On $2$-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis\",\"authors\":\"N. Abuzyarova\",\"doi\":\"10.13108/2016-8-3-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the work we consider a topological module P(a; b) of entire functions, which is the isomorphic image under the Fourier-Laplace transform of the Schwarz space of distributions with compact supports in a finite or infinite interval (a; b) ⊂ R. We prove that each weakly localizable module in P(a; b) is either generated by its two elements or is equal to the closure of two submodules of special form. We also provide dual results on subspaces in C∞(a; b) invariant w.r.t. the differentiation operator.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"82 1\",\"pages\":\"8-21\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2016-8-3-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2016-8-3-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

在工作中我们考虑一个拓扑模块P(a;b)整个函数,它是Schwarz空间在有限或无限区间内紧支撑分布的傅里叶-拉普拉斯变换下的同构像(a;b)∧R.我们证明P(a;B)要么由它的两个元素生成,要么等于两个特殊形式的子模块的闭包。我们还提供了C∞(a;B)不变量W.R.T.微分算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $2$-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis
In the work we consider a topological module P(a; b) of entire functions, which is the isomorphic image under the Fourier-Laplace transform of the Schwarz space of distributions with compact supports in a finite or infinite interval (a; b) ⊂ R. We prove that each weakly localizable module in P(a; b) is either generated by its two elements or is equal to the closure of two submodules of special form. We also provide dual results on subspaces in C∞(a; b) invariant w.r.t. the differentiation operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信