V. Fast, O. Sharifov, Eric R. Cheek, Jonathan C. Newton, R. Ideker
{"title":"膜电位光学映射评估左室壁除颤过程中的虚拟电极","authors":"V. Fast, O. Sharifov, Eric R. Cheek, Jonathan C. Newton, R. Ideker","doi":"10.1161/01.CIR.0000027103.54792.9C","DOIUrl":null,"url":null,"abstract":"Background—It is believed that defibrillation is due to shock-induced changes of transmembrane potential (&Dgr;Vm) in the bulk of ventricular myocardium (so-called virtual electrodes), but experimental proof of this hypothesis is absent. Here, intramural shock-induced &Dgr;Vm were measured for the first time in isolated preparations of left ventricle (LV) by an optical mapping technique. Methods and Results—LV preparations were excised from porcine hearts (n=9) and perfused through a coronary artery. Rectangular shocks (duration 10 ms, field strength E ≈2 to 50 V/cm) were applied across the wall during the action potential plateau by 2 large electrodes. Shock-induced &Dgr;Vm were measured on the transmural wall surface with a 16×16 photodiode array (resolution 1.2 mm/diode). Whereas weak shocks (E≈2 V/cm) induced negligible &Dgr;Vm in the wall middle, stronger shocks produced intramural &Dgr;Vm of 2 types. (1) Shocks with E>4 V/cm produced both positive and negative intramural &Dgr;Vm that changed their sign on changing shock polarity, possibly reflecting large-scale nonuniformities in the tissue structure; the &Dgr;Vm patterns were asymmetrical, with &Dgr;V−m>&Dgr;V+m. (2) Shocks with E>34 V/cm produced predominantly negative &Dgr;Vm across the whole transmural surface, independent of the shock polarity. These relatively uniform polarizations could be a result of microscopic discontinuities in tissue structure. Conclusions—Strong defibrillation shocks induce &Dgr;Vm in the intramural layers of LV. During action potential plateau, intramural &Dgr;Vm are typically asymmetrical (&Dgr;V−m>&Dgr;V+m) and become globally negative during very strong shocks.","PeriodicalId":10194,"journal":{"name":"Circulation: Journal of the American Heart Association","volume":"28 1","pages":"1007-1014"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Intramural Virtual Electrodes During Defibrillation Shocks in Left Ventricular Wall Assessed by Optical Mapping of Membrane Potential\",\"authors\":\"V. Fast, O. Sharifov, Eric R. Cheek, Jonathan C. Newton, R. Ideker\",\"doi\":\"10.1161/01.CIR.0000027103.54792.9C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background—It is believed that defibrillation is due to shock-induced changes of transmembrane potential (&Dgr;Vm) in the bulk of ventricular myocardium (so-called virtual electrodes), but experimental proof of this hypothesis is absent. Here, intramural shock-induced &Dgr;Vm were measured for the first time in isolated preparations of left ventricle (LV) by an optical mapping technique. Methods and Results—LV preparations were excised from porcine hearts (n=9) and perfused through a coronary artery. Rectangular shocks (duration 10 ms, field strength E ≈2 to 50 V/cm) were applied across the wall during the action potential plateau by 2 large electrodes. Shock-induced &Dgr;Vm were measured on the transmural wall surface with a 16×16 photodiode array (resolution 1.2 mm/diode). Whereas weak shocks (E≈2 V/cm) induced negligible &Dgr;Vm in the wall middle, stronger shocks produced intramural &Dgr;Vm of 2 types. (1) Shocks with E>4 V/cm produced both positive and negative intramural &Dgr;Vm that changed their sign on changing shock polarity, possibly reflecting large-scale nonuniformities in the tissue structure; the &Dgr;Vm patterns were asymmetrical, with &Dgr;V−m>&Dgr;V+m. (2) Shocks with E>34 V/cm produced predominantly negative &Dgr;Vm across the whole transmural surface, independent of the shock polarity. These relatively uniform polarizations could be a result of microscopic discontinuities in tissue structure. Conclusions—Strong defibrillation shocks induce &Dgr;Vm in the intramural layers of LV. During action potential plateau, intramural &Dgr;Vm are typically asymmetrical (&Dgr;V−m>&Dgr;V+m) and become globally negative during very strong shocks.\",\"PeriodicalId\":10194,\"journal\":{\"name\":\"Circulation: Journal of the American Heart Association\",\"volume\":\"28 1\",\"pages\":\"1007-1014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Journal of the American Heart Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/01.CIR.0000027103.54792.9C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.CIR.0000027103.54792.9C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intramural Virtual Electrodes During Defibrillation Shocks in Left Ventricular Wall Assessed by Optical Mapping of Membrane Potential
Background—It is believed that defibrillation is due to shock-induced changes of transmembrane potential (&Dgr;Vm) in the bulk of ventricular myocardium (so-called virtual electrodes), but experimental proof of this hypothesis is absent. Here, intramural shock-induced &Dgr;Vm were measured for the first time in isolated preparations of left ventricle (LV) by an optical mapping technique. Methods and Results—LV preparations were excised from porcine hearts (n=9) and perfused through a coronary artery. Rectangular shocks (duration 10 ms, field strength E ≈2 to 50 V/cm) were applied across the wall during the action potential plateau by 2 large electrodes. Shock-induced &Dgr;Vm were measured on the transmural wall surface with a 16×16 photodiode array (resolution 1.2 mm/diode). Whereas weak shocks (E≈2 V/cm) induced negligible &Dgr;Vm in the wall middle, stronger shocks produced intramural &Dgr;Vm of 2 types. (1) Shocks with E>4 V/cm produced both positive and negative intramural &Dgr;Vm that changed their sign on changing shock polarity, possibly reflecting large-scale nonuniformities in the tissue structure; the &Dgr;Vm patterns were asymmetrical, with &Dgr;V−m>&Dgr;V+m. (2) Shocks with E>34 V/cm produced predominantly negative &Dgr;Vm across the whole transmural surface, independent of the shock polarity. These relatively uniform polarizations could be a result of microscopic discontinuities in tissue structure. Conclusions—Strong defibrillation shocks induce &Dgr;Vm in the intramural layers of LV. During action potential plateau, intramural &Dgr;Vm are typically asymmetrical (&Dgr;V−m>&Dgr;V+m) and become globally negative during very strong shocks.