用有限元法求解功能梯度矩形板的最优材料梯度

W. Helal, D. Shi
{"title":"用有限元法求解功能梯度矩形板的最优材料梯度","authors":"W. Helal, D. Shi","doi":"10.1155/2014/501935","DOIUrl":null,"url":null,"abstract":"The optimum material gradient of a rectangular plate made of functionally graded material (FGM) is determined in this study. Elastic modulus of functionally graded (FG) rectangular plate is assumed to vary continuously throughout the height of the plate, according to the volume fraction of the constituent materials based on the power law, exponential model I, exponential model П, or sigmoid functions. The difference between these distribution functions for the constituents’ volume fraction is discussed in this study. To determine the optimum material gradient of a rectangular plate made of FGM, the finite element method and the optimization techniques are used. In this study, von Mises stress, shear stress, and deformation in FGM case with the power law, exponential model I, exponential model П, or sigmoid functions are investigated. Simulation results indicate that the optimum material gradient for FG rectangular plate can be described by using a modified sigmoid function. The maximum values of von Mises stress, shear stress, and deformation in FG rectangular plate with the optimum material gradient are reduced compared with the pure material case by around 22%, 11%, and 24%, respectively.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"11 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimum Material Gradient for Functionally Graded Rectangular Plate with the Finite Element Method\",\"authors\":\"W. Helal, D. Shi\",\"doi\":\"10.1155/2014/501935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimum material gradient of a rectangular plate made of functionally graded material (FGM) is determined in this study. Elastic modulus of functionally graded (FG) rectangular plate is assumed to vary continuously throughout the height of the plate, according to the volume fraction of the constituent materials based on the power law, exponential model I, exponential model П, or sigmoid functions. The difference between these distribution functions for the constituents’ volume fraction is discussed in this study. To determine the optimum material gradient of a rectangular plate made of FGM, the finite element method and the optimization techniques are used. In this study, von Mises stress, shear stress, and deformation in FGM case with the power law, exponential model I, exponential model П, or sigmoid functions are investigated. Simulation results indicate that the optimum material gradient for FG rectangular plate can be described by using a modified sigmoid function. The maximum values of von Mises stress, shear stress, and deformation in FG rectangular plate with the optimum material gradient are reduced compared with the pure material case by around 22%, 11%, and 24%, respectively.\",\"PeriodicalId\":13278,\"journal\":{\"name\":\"Indian Journal of Materials Science\",\"volume\":\"11 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/501935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/501935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文确定了功能梯度材料(FGM)矩形板的最佳材料梯度。根据幂律、指数模型I、指数模型П或s型函数,假设功能梯度(FG)矩形板的弹性模量在板的整个高度上连续变化。本研究讨论了这些成分体积分数分布函数之间的差异。为了确定FGM矩形板的最佳材料梯度,采用了有限元法和优化技术。在本研究中,von Mises应力、剪切应力和FGM情况下的幂律、指数模型I、指数模型П或s型函数的变形进行了研究。仿真结果表明,FG矩形板的最佳材料梯度可以用修正的s型函数来描述。最佳材料梯度下FG矩形板的von Mises应力、剪切应力和变形最大值分别比纯材料情况降低22%、11%和24%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum Material Gradient for Functionally Graded Rectangular Plate with the Finite Element Method
The optimum material gradient of a rectangular plate made of functionally graded material (FGM) is determined in this study. Elastic modulus of functionally graded (FG) rectangular plate is assumed to vary continuously throughout the height of the plate, according to the volume fraction of the constituent materials based on the power law, exponential model I, exponential model П, or sigmoid functions. The difference between these distribution functions for the constituents’ volume fraction is discussed in this study. To determine the optimum material gradient of a rectangular plate made of FGM, the finite element method and the optimization techniques are used. In this study, von Mises stress, shear stress, and deformation in FGM case with the power law, exponential model I, exponential model П, or sigmoid functions are investigated. Simulation results indicate that the optimum material gradient for FG rectangular plate can be described by using a modified sigmoid function. The maximum values of von Mises stress, shear stress, and deformation in FG rectangular plate with the optimum material gradient are reduced compared with the pure material case by around 22%, 11%, and 24%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信