{"title":"霍恩算法的简单函数表示和归纳正确性证明","authors":"A. Ravara","doi":"10.4204/EPTCS.278.6","DOIUrl":null,"url":null,"abstract":"We present a recursive formulation of the Horn algorithm for deciding the satisfiability of propositional clauses. The usual presentations in imperative pseudo-code are informal and not suitable for simple proofs of its main properties. By defining the algorithm as a recursive function (computing a least fixed-point), we achieve: 1) a concise, yet rigorous, formalisation; 2) a clear form of visualising executions of the algorithm, step-by-step; 3) precise results, simple to state and with clean inductive proofs.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"abs/1809.04772 1","pages":"34-48"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Functional Presentation and an Inductive Correctness Proof of the Horn Algorithm\",\"authors\":\"A. Ravara\",\"doi\":\"10.4204/EPTCS.278.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a recursive formulation of the Horn algorithm for deciding the satisfiability of propositional clauses. The usual presentations in imperative pseudo-code are informal and not suitable for simple proofs of its main properties. By defining the algorithm as a recursive function (computing a least fixed-point), we achieve: 1) a concise, yet rigorous, formalisation; 2) a clear form of visualising executions of the algorithm, step-by-step; 3) precise results, simple to state and with clean inductive proofs.\",\"PeriodicalId\":10720,\"journal\":{\"name\":\"CoRR\",\"volume\":\"abs/1809.04772 1\",\"pages\":\"34-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CoRR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.278.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.278.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Simple Functional Presentation and an Inductive Correctness Proof of the Horn Algorithm
We present a recursive formulation of the Horn algorithm for deciding the satisfiability of propositional clauses. The usual presentations in imperative pseudo-code are informal and not suitable for simple proofs of its main properties. By defining the algorithm as a recursive function (computing a least fixed-point), we achieve: 1) a concise, yet rigorous, formalisation; 2) a clear form of visualising executions of the algorithm, step-by-step; 3) precise results, simple to state and with clean inductive proofs.