霍恩算法的简单函数表示和归纳正确性证明

CoRR Pub Date : 2018-09-12 DOI:10.4204/EPTCS.278.6
A. Ravara
{"title":"霍恩算法的简单函数表示和归纳正确性证明","authors":"A. Ravara","doi":"10.4204/EPTCS.278.6","DOIUrl":null,"url":null,"abstract":"We present a recursive formulation of the Horn algorithm for deciding the satisfiability of propositional clauses. The usual presentations in imperative pseudo-code are informal and not suitable for simple proofs of its main properties. By defining the algorithm as a recursive function (computing a least fixed-point), we achieve: 1) a concise, yet rigorous, formalisation; 2) a clear form of visualising executions of the algorithm, step-by-step; 3) precise results, simple to state and with clean inductive proofs.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"abs/1809.04772 1","pages":"34-48"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Functional Presentation and an Inductive Correctness Proof of the Horn Algorithm\",\"authors\":\"A. Ravara\",\"doi\":\"10.4204/EPTCS.278.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a recursive formulation of the Horn algorithm for deciding the satisfiability of propositional clauses. The usual presentations in imperative pseudo-code are informal and not suitable for simple proofs of its main properties. By defining the algorithm as a recursive function (computing a least fixed-point), we achieve: 1) a concise, yet rigorous, formalisation; 2) a clear form of visualising executions of the algorithm, step-by-step; 3) precise results, simple to state and with clean inductive proofs.\",\"PeriodicalId\":10720,\"journal\":{\"name\":\"CoRR\",\"volume\":\"abs/1809.04772 1\",\"pages\":\"34-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CoRR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.278.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.278.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了决定命题子句可满足性的Horn算法的递推公式。命令式伪代码中通常的表示是非正式的,不适合简单地证明其主要属性。通过将算法定义为递归函数(计算最小不动点),我们实现了:1)简洁而严谨的形式化;2)清晰的可视化算法执行形式,一步一步;结果准确,表述简单,归纳证明清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Functional Presentation and an Inductive Correctness Proof of the Horn Algorithm
We present a recursive formulation of the Horn algorithm for deciding the satisfiability of propositional clauses. The usual presentations in imperative pseudo-code are informal and not suitable for simple proofs of its main properties. By defining the algorithm as a recursive function (computing a least fixed-point), we achieve: 1) a concise, yet rigorous, formalisation; 2) a clear form of visualising executions of the algorithm, step-by-step; 3) precise results, simple to state and with clean inductive proofs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信