{"title":"算术统计与非交换Iwasawa理论","authors":"Debanjana Kundu, Antonio Lei, Anwesh Ray","doi":"10.25537/dm.2022v27","DOIUrl":null,"url":null,"abstract":"Let $p$ be an odd prime. Associated to a pair $(E, \\mathcal{F}_\\infty)$ consisting of a rational elliptic curve $E$ and a $p$-adic Lie extension $\\mathcal{F}_\\infty$ of $\\mathbb{Q}$, is the $p$-primary Selmer group $Sel_{p^\\infty}(E/\\mathcal{F}_\\infty)$ of $E$ over $\\mathcal{F}_\\infty$. In this paper, we study the arithmetic statistics for the algebraic structure of this Selmer group. The results provide insights into the asymptotics for the growth of Mordell--Weil ranks of elliptic curves in noncommutative towers.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"29 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Arithmetic statistics and noncommutative Iwasawa theory\",\"authors\":\"Debanjana Kundu, Antonio Lei, Anwesh Ray\",\"doi\":\"10.25537/dm.2022v27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be an odd prime. Associated to a pair $(E, \\\\mathcal{F}_\\\\infty)$ consisting of a rational elliptic curve $E$ and a $p$-adic Lie extension $\\\\mathcal{F}_\\\\infty$ of $\\\\mathbb{Q}$, is the $p$-primary Selmer group $Sel_{p^\\\\infty}(E/\\\\mathcal{F}_\\\\infty)$ of $E$ over $\\\\mathcal{F}_\\\\infty$. In this paper, we study the arithmetic statistics for the algebraic structure of this Selmer group. The results provide insights into the asymptotics for the growth of Mordell--Weil ranks of elliptic curves in noncommutative towers.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.25537/dm.2022v27\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.25537/dm.2022v27","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
设$p$为奇素数。与$\mathbb{Q}$的有理椭圆曲线$E$和$p$ -adic Lie扩展$\mathcal{F}_\infty$组成的$(E, \mathcal{F}_\infty)$对相关联的是$E$的$Sel_{p^\infty}(E/\mathcal{F}_\infty)$ -primary Selmer群$p$ over $\mathcal{F}_\infty$。本文研究了这类Selmer群的代数结构的算术统计。结果提供了非交换塔中椭圆曲线的莫德尔-韦尔秩增长的渐近性的见解。
Arithmetic statistics and noncommutative Iwasawa theory
Let $p$ be an odd prime. Associated to a pair $(E, \mathcal{F}_\infty)$ consisting of a rational elliptic curve $E$ and a $p$-adic Lie extension $\mathcal{F}_\infty$ of $\mathbb{Q}$, is the $p$-primary Selmer group $Sel_{p^\infty}(E/\mathcal{F}_\infty)$ of $E$ over $\mathcal{F}_\infty$. In this paper, we study the arithmetic statistics for the algebraic structure of this Selmer group. The results provide insights into the asymptotics for the growth of Mordell--Weil ranks of elliptic curves in noncommutative towers.
期刊介绍:
DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented
Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.