Andreas Miltiadous, Katerina D. Tzimourta, Theodora Afrantou, P. Ioannidis, N. Grigoriadis, D. Tsalikakis, P. Angelidis, M. Tsipouras, E. Glavas, N. Giannakeas, A. Tzallas
{"title":"阿尔茨海默病、额颞叶痴呆和健康受试者常规脑电记录的头皮脑电数据集","authors":"Andreas Miltiadous, Katerina D. Tzimourta, Theodora Afrantou, P. Ioannidis, N. Grigoriadis, D. Tsalikakis, P. Angelidis, M. Tsipouras, E. Glavas, N. Giannakeas, A. Tzallas","doi":"10.3390/data8060095","DOIUrl":null,"url":null,"abstract":"Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer’s disease and frontotemporal dementia, and healthy controls. The dataset was collected using a clinical EEG system with 19 scalp electrodes while participants were in a resting state with their eyes closed. The data collection process included rigorous quality control measures to ensure data accuracy and consistency. The dataset contains recordings of 36 Alzheimer’s patients, 23 frontotemporal dementia patients, and 29 healthy age-matched subjects. For each subject, the Mini-Mental State Examination score is reported. A monopolar montage was used to collect the signals. A raw and preprocessed EEG is included in the standard BIDS format. For the preprocessed signals, established methods such as artifact subspace reconstruction and an independent component analysis have been employed for denoising. The dataset has significant reuse potential since Alzheimer’s EEG Machine Learning studies are increasing in popularity and there is a lack of publicly available EEG datasets. The resting-state EEG data can be used to explore alterations in brain activity and connectivity in these conditions, and to develop new diagnostic and treatment approaches. Additionally, the dataset can be used to compare EEG characteristics between different types of dementia, which could provide insights into the underlying mechanisms of these conditions.","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"1 1","pages":"95"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Dataset of Scalp EEG Recordings of Alzheimer's Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG\",\"authors\":\"Andreas Miltiadous, Katerina D. Tzimourta, Theodora Afrantou, P. Ioannidis, N. Grigoriadis, D. Tsalikakis, P. Angelidis, M. Tsipouras, E. Glavas, N. Giannakeas, A. Tzallas\",\"doi\":\"10.3390/data8060095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer’s disease and frontotemporal dementia, and healthy controls. The dataset was collected using a clinical EEG system with 19 scalp electrodes while participants were in a resting state with their eyes closed. The data collection process included rigorous quality control measures to ensure data accuracy and consistency. The dataset contains recordings of 36 Alzheimer’s patients, 23 frontotemporal dementia patients, and 29 healthy age-matched subjects. For each subject, the Mini-Mental State Examination score is reported. A monopolar montage was used to collect the signals. A raw and preprocessed EEG is included in the standard BIDS format. For the preprocessed signals, established methods such as artifact subspace reconstruction and an independent component analysis have been employed for denoising. The dataset has significant reuse potential since Alzheimer’s EEG Machine Learning studies are increasing in popularity and there is a lack of publicly available EEG datasets. The resting-state EEG data can be used to explore alterations in brain activity and connectivity in these conditions, and to develop new diagnostic and treatment approaches. Additionally, the dataset can be used to compare EEG characteristics between different types of dementia, which could provide insights into the underlying mechanisms of these conditions.\",\"PeriodicalId\":55580,\"journal\":{\"name\":\"Atomic Data and Nuclear Data Tables\",\"volume\":\"1 1\",\"pages\":\"95\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Data and Nuclear Data Tables\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/data8060095\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Data and Nuclear Data Tables","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/data8060095","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
A Dataset of Scalp EEG Recordings of Alzheimer's Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG
Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer’s disease and frontotemporal dementia, and healthy controls. The dataset was collected using a clinical EEG system with 19 scalp electrodes while participants were in a resting state with their eyes closed. The data collection process included rigorous quality control measures to ensure data accuracy and consistency. The dataset contains recordings of 36 Alzheimer’s patients, 23 frontotemporal dementia patients, and 29 healthy age-matched subjects. For each subject, the Mini-Mental State Examination score is reported. A monopolar montage was used to collect the signals. A raw and preprocessed EEG is included in the standard BIDS format. For the preprocessed signals, established methods such as artifact subspace reconstruction and an independent component analysis have been employed for denoising. The dataset has significant reuse potential since Alzheimer’s EEG Machine Learning studies are increasing in popularity and there is a lack of publicly available EEG datasets. The resting-state EEG data can be used to explore alterations in brain activity and connectivity in these conditions, and to develop new diagnostic and treatment approaches. Additionally, the dataset can be used to compare EEG characteristics between different types of dementia, which could provide insights into the underlying mechanisms of these conditions.
期刊介绍:
Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive ... click here for full Aims & Scope
Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive and comprehensive compilations of experimental and theoretical results are featured.