关于酉Cayley图的拉普拉斯谱

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
S. Pirzada, Z. Barati, M. Afkhami
{"title":"关于酉Cayley图的拉普拉斯谱","authors":"S. Pirzada, Z. Barati, M. Afkhami","doi":"10.2478/ausi-2021-0011","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a commutative ring with unity 1 ≠ 0 and let R× be the set of all unit elements of R. The unitary Cayley graph of R, denoted by GR = Cay(R, R×), is a simple graph whose vertex set is R and there is an edge between two distinct vertices x and y of R if and only if x − y ∈ R×. In this paper, we determine the Laplacian and signless Laplacian eigenvalues for the unitary Cayley graph of a commutative ring. Also, we compute the Laplacian and signless Laplacian energy of the graph GR and its line graph.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"97 1","pages":"251 - 264"},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Laplacian spectrum of unitary Cayley graphs\",\"authors\":\"S. Pirzada, Z. Barati, M. Afkhami\",\"doi\":\"10.2478/ausi-2021-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a commutative ring with unity 1 ≠ 0 and let R× be the set of all unit elements of R. The unitary Cayley graph of R, denoted by GR = Cay(R, R×), is a simple graph whose vertex set is R and there is an edge between two distinct vertices x and y of R if and only if x − y ∈ R×. In this paper, we determine the Laplacian and signless Laplacian eigenvalues for the unitary Cayley graph of a commutative ring. Also, we compute the Laplacian and signless Laplacian energy of the graph GR and its line graph.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"97 1\",\"pages\":\"251 - 264\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2021-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2021-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

摘要设R为一个单位1≠0的交换环,设rx为R的所有单位元素的集合。R的酉Cayley图,记为GR = Cay(R, rx),是一个简单图,其顶点集为R,且当且仅当x−y∈rx时,R的两个不同的顶点x和y之间存在一条边。本文确定了交换环的幺正Cayley图的拉普拉斯特征值和无符号拉普拉斯特征值。同时,我们计算了图GR及其线形图的拉普拉斯能量和无符号拉普拉斯能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Laplacian spectrum of unitary Cayley graphs
Abstract Let R be a commutative ring with unity 1 ≠ 0 and let R× be the set of all unit elements of R. The unitary Cayley graph of R, denoted by GR = Cay(R, R×), is a simple graph whose vertex set is R and there is an edge between two distinct vertices x and y of R if and only if x − y ∈ R×. In this paper, we determine the Laplacian and signless Laplacian eigenvalues for the unitary Cayley graph of a commutative ring. Also, we compute the Laplacian and signless Laplacian energy of the graph GR and its line graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信