{"title":"基于隐马尔可夫模型的可穿戴计算机实时识别系统中不相关人类行为的拒绝","authors":"Jerry Mannil, Mohammad-Mahdi Bidmeshki, R. Jafari","doi":"10.1145/2077546.2077555","DOIUrl":null,"url":null,"abstract":"Hidden Markov Model (HMM) is a well established technique for detecting patterns in a stream of observations. It performs well when the observation sequence does not contain unseen patterns that were not part of the training set. In an unconstrained environment, the observation sequence might contain new patterns that the HMM model is not familiar with. In such cases, HMM will match the test pattern to some trained pattern, which is most similar to the test pattern. This increases the false positives in the system. In this paper, we are describing a threshold based technique to detect such irrelevant patterns in a continuous stream of observations, and classify them as unwanted or bad patterns. The novelty of our approach is that it allows early detection of unwanted patterns. Test patterns are validated on a fixed length substring of observation sequence, rather than on the whole observation sequence corresponding to the test pattern. The substrings are validated based on its similarity with a valid pattern using a threshold value. This reduces the latency of detection of unwanted movement, and makes the detection process independent of duration of the various pattern classes. We evaluated this technique in the context of body sensor networks based human action recognition, and have achieved about 93 percent accuracy in detecting unwanted actions, while maintaining a 94 percent accuracy of recognizing valid actions.","PeriodicalId":91386,"journal":{"name":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Rejection of irrelevant human actions in real-time hidden Markov model based recognition systems for wearable computers\",\"authors\":\"Jerry Mannil, Mohammad-Mahdi Bidmeshki, R. Jafari\",\"doi\":\"10.1145/2077546.2077555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden Markov Model (HMM) is a well established technique for detecting patterns in a stream of observations. It performs well when the observation sequence does not contain unseen patterns that were not part of the training set. In an unconstrained environment, the observation sequence might contain new patterns that the HMM model is not familiar with. In such cases, HMM will match the test pattern to some trained pattern, which is most similar to the test pattern. This increases the false positives in the system. In this paper, we are describing a threshold based technique to detect such irrelevant patterns in a continuous stream of observations, and classify them as unwanted or bad patterns. The novelty of our approach is that it allows early detection of unwanted patterns. Test patterns are validated on a fixed length substring of observation sequence, rather than on the whole observation sequence corresponding to the test pattern. The substrings are validated based on its similarity with a valid pattern using a threshold value. This reduces the latency of detection of unwanted movement, and makes the detection process independent of duration of the various pattern classes. We evaluated this technique in the context of body sensor networks based human action recognition, and have achieved about 93 percent accuracy in detecting unwanted actions, while maintaining a 94 percent accuracy of recognizing valid actions.\",\"PeriodicalId\":91386,\"journal\":{\"name\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2077546.2077555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2077546.2077555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rejection of irrelevant human actions in real-time hidden Markov model based recognition systems for wearable computers
Hidden Markov Model (HMM) is a well established technique for detecting patterns in a stream of observations. It performs well when the observation sequence does not contain unseen patterns that were not part of the training set. In an unconstrained environment, the observation sequence might contain new patterns that the HMM model is not familiar with. In such cases, HMM will match the test pattern to some trained pattern, which is most similar to the test pattern. This increases the false positives in the system. In this paper, we are describing a threshold based technique to detect such irrelevant patterns in a continuous stream of observations, and classify them as unwanted or bad patterns. The novelty of our approach is that it allows early detection of unwanted patterns. Test patterns are validated on a fixed length substring of observation sequence, rather than on the whole observation sequence corresponding to the test pattern. The substrings are validated based on its similarity with a valid pattern using a threshold value. This reduces the latency of detection of unwanted movement, and makes the detection process independent of duration of the various pattern classes. We evaluated this technique in the context of body sensor networks based human action recognition, and have achieved about 93 percent accuracy in detecting unwanted actions, while maintaining a 94 percent accuracy of recognizing valid actions.