利用神经网络标定李-卡特模型和泊松李-卡特模型

IF 1.7 3区 经济学 Q2 ECONOMICS
ASTIN Bulletin Pub Date : 2021-05-27 DOI:10.1017/asb.2022.5
Salvatore Scognamiglio
{"title":"利用神经网络标定李-卡特模型和泊松李-卡特模型","authors":"Salvatore Scognamiglio","doi":"10.1017/asb.2022.5","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a neural network (NN) approach for fitting the Lee-Carter (LC) and the Poisson Lee-Carter model on multiple populations. We develop some NNs that replicate the structure of the individual LC models and allow their joint fitting by simultaneously analysing the mortality data of all the considered populations. The NN architecture is specifically designed to calibrate each individual model using all available information instead of using a population-specific subset of data as in the traditional estimation schemes. A large set of numerical experiments performed on all the countries of the Human Mortality Database shows the effectiveness of our approach. In particular, the resulting parameter estimates appear smooth and less sensitive to the random fluctuations often present in the mortality rates’ data, especially for low-population countries. In addition, the forecasting performance results significantly improved as well.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"30 1","pages":"519 - 561"},"PeriodicalIF":1.7000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CALIBRATING THE LEE-CARTER AND THE POISSON LEE-CARTER MODELS VIA NEURAL NETWORKS\",\"authors\":\"Salvatore Scognamiglio\",\"doi\":\"10.1017/asb.2022.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper introduces a neural network (NN) approach for fitting the Lee-Carter (LC) and the Poisson Lee-Carter model on multiple populations. We develop some NNs that replicate the structure of the individual LC models and allow their joint fitting by simultaneously analysing the mortality data of all the considered populations. The NN architecture is specifically designed to calibrate each individual model using all available information instead of using a population-specific subset of data as in the traditional estimation schemes. A large set of numerical experiments performed on all the countries of the Human Mortality Database shows the effectiveness of our approach. In particular, the resulting parameter estimates appear smooth and less sensitive to the random fluctuations often present in the mortality rates’ data, especially for low-population countries. In addition, the forecasting performance results significantly improved as well.\",\"PeriodicalId\":8617,\"journal\":{\"name\":\"ASTIN Bulletin\",\"volume\":\"30 1\",\"pages\":\"519 - 561\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTIN Bulletin\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2022.5\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2022.5","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 6

摘要

摘要介绍了一种神经网络(NN)方法,用于拟合多种群上的Lee-Carter (LC)模型和泊松Lee-Carter模型。我们开发了一些神经网络,这些神经网络复制了单个LC模型的结构,并通过同时分析所有考虑群体的死亡率数据来允许它们的联合拟合。神经网络架构是专门设计用来使用所有可用信息校准每个单独的模型,而不是像传统估计方案那样使用特定于人口的数据子集。在人类死亡率数据库的所有国家进行的大量数值实验表明,我们的方法是有效的。特别是,由此得出的参数估计值似乎是平滑的,对死亡率数据中经常出现的随机波动不太敏感,特别是在人口少的国家。此外,预测性能结果也有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CALIBRATING THE LEE-CARTER AND THE POISSON LEE-CARTER MODELS VIA NEURAL NETWORKS
Abstract This paper introduces a neural network (NN) approach for fitting the Lee-Carter (LC) and the Poisson Lee-Carter model on multiple populations. We develop some NNs that replicate the structure of the individual LC models and allow their joint fitting by simultaneously analysing the mortality data of all the considered populations. The NN architecture is specifically designed to calibrate each individual model using all available information instead of using a population-specific subset of data as in the traditional estimation schemes. A large set of numerical experiments performed on all the countries of the Human Mortality Database shows the effectiveness of our approach. In particular, the resulting parameter estimates appear smooth and less sensitive to the random fluctuations often present in the mortality rates’ data, especially for low-population countries. In addition, the forecasting performance results significantly improved as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASTIN Bulletin
ASTIN Bulletin 数学-数学跨学科应用
CiteScore
3.20
自引率
5.30%
发文量
24
审稿时长
>12 weeks
期刊介绍: ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信