{"title":"两样本半参数模型的最大近似Bernstein似然估计","authors":"Zhong Guan","doi":"10.1080/10485252.2022.2158332","DOIUrl":null,"url":null,"abstract":"Maximum likelihood estimators are proposed for the parameters and the underlying densities in a semiparametric density ratio model in which the nonparametric baseline density is approximated by the Bernstein polynomial model. The EM algorithm is used to obtain the maximum approximate Bernstein likelihood estimates. The proposed method is illustrated by two real data from medical research and is shown by simulation to have better performance than the existing ones. Some asymptotic results are also presented and proved.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"7 1","pages":"437 - 453"},"PeriodicalIF":0.8000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum approximate Bernstein likelihood estimation in a two-sample semiparametric model\",\"authors\":\"Zhong Guan\",\"doi\":\"10.1080/10485252.2022.2158332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum likelihood estimators are proposed for the parameters and the underlying densities in a semiparametric density ratio model in which the nonparametric baseline density is approximated by the Bernstein polynomial model. The EM algorithm is used to obtain the maximum approximate Bernstein likelihood estimates. The proposed method is illustrated by two real data from medical research and is shown by simulation to have better performance than the existing ones. Some asymptotic results are also presented and proved.\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\"7 1\",\"pages\":\"437 - 453\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2022.2158332\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2022.2158332","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Maximum approximate Bernstein likelihood estimation in a two-sample semiparametric model
Maximum likelihood estimators are proposed for the parameters and the underlying densities in a semiparametric density ratio model in which the nonparametric baseline density is approximated by the Bernstein polynomial model. The EM algorithm is used to obtain the maximum approximate Bernstein likelihood estimates. The proposed method is illustrated by two real data from medical research and is shown by simulation to have better performance than the existing ones. Some asymptotic results are also presented and proved.
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.