信息链接的统计字符串相似度模型

A. Takasu
{"title":"信息链接的统计字符串相似度模型","authors":"A. Takasu","doi":"10.2201/NIIPI.2009.6.7","DOIUrl":null,"url":null,"abstract":"This paper proposes a statistical string similarity model for approximate matching in information linkage. The proposed similarity model is an extension of hidden Markov model and its learnable ability realizes string matching function adaptable to various information sources. The main contribution of this paper is to develop an efficient learning algorithm for estimating parameters of the statistical similarity model. The proposed algorithm is based on the Expectation-Maximization (EM) technique where dynamic programing technique is used to update parameters in EM process.","PeriodicalId":91638,"journal":{"name":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","volume":"39 1","pages":"57"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical string similarity model for information linkage\",\"authors\":\"A. Takasu\",\"doi\":\"10.2201/NIIPI.2009.6.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a statistical string similarity model for approximate matching in information linkage. The proposed similarity model is an extension of hidden Markov model and its learnable ability realizes string matching function adaptable to various information sources. The main contribution of this paper is to develop an efficient learning algorithm for estimating parameters of the statistical similarity model. The proposed algorithm is based on the Expectation-Maximization (EM) technique where dynamic programing technique is used to update parameters in EM process.\",\"PeriodicalId\":91638,\"journal\":{\"name\":\"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"39 1\",\"pages\":\"57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2201/NIIPI.2009.6.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2201/NIIPI.2009.6.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于信息链接近似匹配的统计字符串相似度模型。所提出的相似度模型是隐马尔可夫模型的扩展,其可学习能力实现了适应各种信息源的字符串匹配功能。本文的主要贡献是开发了一种有效的学习算法来估计统计相似模型的参数。该算法以期望最大化(EM)技术为基础,采用动态规划技术对EM过程中的参数进行更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical string similarity model for information linkage
This paper proposes a statistical string similarity model for approximate matching in information linkage. The proposed similarity model is an extension of hidden Markov model and its learnable ability realizes string matching function adaptable to various information sources. The main contribution of this paper is to develop an efficient learning algorithm for estimating parameters of the statistical similarity model. The proposed algorithm is based on the Expectation-Maximization (EM) technique where dynamic programing technique is used to update parameters in EM process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信