实时应用的城市雨水系统的高效水动力学建模

H. Baumann, N. H. Ravn, A. Schaum
{"title":"实时应用的城市雨水系统的高效水动力学建模","authors":"H. Baumann, N. H. Ravn, A. Schaum","doi":"10.3390/modelling3040030","DOIUrl":null,"url":null,"abstract":"Urban water drainage systems represent complex networks with nonlinear dynamics and different types of interactions. This yields an involved modeling problem for which different off-line simulation approaches are available. Nevertheless, these approaches cannot be used for real-time simulations, i.e., running in parallel to weather now- and forecasts and enabling the monitoring and automatic control of urban water drainage systems. Alternative approaches, used commonly for automation purposes, involve parameterized linear delay systems, which can be used in real-time but lack the necessary level of detail, which, in particular, is required for adequate flood risk prognostics. Given this setup, in the present paper, an approach for the effective modeling of detailed water drainage systems for real-time applications implemented with the open-source Storm Water Management Model (SWMM) software is addressed and exemplified for a part of the water drainage system of the city of Flensburg in northern Germany. Additionally, a freely available early-warning system prototype is introduced and used to combine weather forcast information on a 2-h prediction horizon with the developed model and available measurements. This prototype is subsequently used for data assimilation using the ensemble Kalman filter (EnKF) for the considered area in Flensburg.","PeriodicalId":89310,"journal":{"name":"WIT transactions on modelling and simulation","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Hydrodynamic Modelling of Urban Stormwater Systems for Real-Time Applications\",\"authors\":\"H. Baumann, N. H. Ravn, A. Schaum\",\"doi\":\"10.3390/modelling3040030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban water drainage systems represent complex networks with nonlinear dynamics and different types of interactions. This yields an involved modeling problem for which different off-line simulation approaches are available. Nevertheless, these approaches cannot be used for real-time simulations, i.e., running in parallel to weather now- and forecasts and enabling the monitoring and automatic control of urban water drainage systems. Alternative approaches, used commonly for automation purposes, involve parameterized linear delay systems, which can be used in real-time but lack the necessary level of detail, which, in particular, is required for adequate flood risk prognostics. Given this setup, in the present paper, an approach for the effective modeling of detailed water drainage systems for real-time applications implemented with the open-source Storm Water Management Model (SWMM) software is addressed and exemplified for a part of the water drainage system of the city of Flensburg in northern Germany. Additionally, a freely available early-warning system prototype is introduced and used to combine weather forcast information on a 2-h prediction horizon with the developed model and available measurements. This prototype is subsequently used for data assimilation using the ensemble Kalman filter (EnKF) for the considered area in Flensburg.\",\"PeriodicalId\":89310,\"journal\":{\"name\":\"WIT transactions on modelling and simulation\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIT transactions on modelling and simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/modelling3040030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT transactions on modelling and simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/modelling3040030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

城市排水系统是一个具有非线性动力学和不同类型相互作用的复杂网络。这产生了一个复杂的建模问题,不同的离线仿真方法是可用的。然而,这些方法不能用于实时模拟,即与现在的天气和预报并行运行,并能够监测和自动控制城市排水系统。通常用于自动化目的的替代方法涉及参数化线性延迟系统,该系统可以实时使用,但缺乏必要的详细程度,特别是需要充分的洪水风险预测。在此基础上,本文以德国北部弗伦斯堡市的部分排水系统为例,讨论了一种利用开源雨水管理模型(SWMM)软件对详细排水系统进行实时应用的有效建模的方法。此外,还介绍了一个免费的预警系统原型,用于将2小时预测范围内的天气预报信息与开发的模型和现有的测量数据相结合。该原型随后用于使用集成卡尔曼滤波器(EnKF)的数据同化在弗伦斯堡考虑的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Hydrodynamic Modelling of Urban Stormwater Systems for Real-Time Applications
Urban water drainage systems represent complex networks with nonlinear dynamics and different types of interactions. This yields an involved modeling problem for which different off-line simulation approaches are available. Nevertheless, these approaches cannot be used for real-time simulations, i.e., running in parallel to weather now- and forecasts and enabling the monitoring and automatic control of urban water drainage systems. Alternative approaches, used commonly for automation purposes, involve parameterized linear delay systems, which can be used in real-time but lack the necessary level of detail, which, in particular, is required for adequate flood risk prognostics. Given this setup, in the present paper, an approach for the effective modeling of detailed water drainage systems for real-time applications implemented with the open-source Storm Water Management Model (SWMM) software is addressed and exemplified for a part of the water drainage system of the city of Flensburg in northern Germany. Additionally, a freely available early-warning system prototype is introduced and used to combine weather forcast information on a 2-h prediction horizon with the developed model and available measurements. This prototype is subsequently used for data assimilation using the ensemble Kalman filter (EnKF) for the considered area in Flensburg.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信