Upama Baruah, Neelam Gogoi, Achyut Konwar, M. Deka, D. Chowdhury, G. Majumdar
{"title":"基于碳点的多巴胺和抗坏血酸传感","authors":"Upama Baruah, Neelam Gogoi, Achyut Konwar, M. Deka, D. Chowdhury, G. Majumdar","doi":"10.1155/2014/178518","DOIUrl":null,"url":null,"abstract":"We demonstrate carbon dot based sensor of catecholamine, namely, dopamine and ascorbic acid. Carbon dots (CDs) were prepared from a green source: commercially available Assam tea. The carbon dots prepared from tea had particle sizes of ∼0.8 nm and are fluorescent. Fluorescence of the carbon dots was found to be quenched in the presence of dopamine and ascorbic acid with greater sensitivity for dopamine. The minimum detectable limits were determined to be 33 μM and 98 μM for dopamine and ascorbic acid, respectively. The quenching constants determined from Stern-Volmer plot were determined to be 5 × 10−4 and 1 × 10−4 for dopamine and ascorbic acid, respectively. A probable mechanism of quenching has been discussed in the paper.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"66 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Carbon Dot Based Sensing of Dopamine and Ascorbic Acid\",\"authors\":\"Upama Baruah, Neelam Gogoi, Achyut Konwar, M. Deka, D. Chowdhury, G. Majumdar\",\"doi\":\"10.1155/2014/178518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate carbon dot based sensor of catecholamine, namely, dopamine and ascorbic acid. Carbon dots (CDs) were prepared from a green source: commercially available Assam tea. The carbon dots prepared from tea had particle sizes of ∼0.8 nm and are fluorescent. Fluorescence of the carbon dots was found to be quenched in the presence of dopamine and ascorbic acid with greater sensitivity for dopamine. The minimum detectable limits were determined to be 33 μM and 98 μM for dopamine and ascorbic acid, respectively. The quenching constants determined from Stern-Volmer plot were determined to be 5 × 10−4 and 1 × 10−4 for dopamine and ascorbic acid, respectively. A probable mechanism of quenching has been discussed in the paper.\",\"PeriodicalId\":16507,\"journal\":{\"name\":\"Journal of Nanoparticles\",\"volume\":\"66 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/178518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/178518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbon Dot Based Sensing of Dopamine and Ascorbic Acid
We demonstrate carbon dot based sensor of catecholamine, namely, dopamine and ascorbic acid. Carbon dots (CDs) were prepared from a green source: commercially available Assam tea. The carbon dots prepared from tea had particle sizes of ∼0.8 nm and are fluorescent. Fluorescence of the carbon dots was found to be quenched in the presence of dopamine and ascorbic acid with greater sensitivity for dopamine. The minimum detectable limits were determined to be 33 μM and 98 μM for dopamine and ascorbic acid, respectively. The quenching constants determined from Stern-Volmer plot were determined to be 5 × 10−4 and 1 × 10−4 for dopamine and ascorbic acid, respectively. A probable mechanism of quenching has been discussed in the paper.