{"title":"轴向压缩机转失速过程中的详细压力测量:节流过程的影响","authors":"G. Margalida, A. Dazin, P. Joseph, O. Roussette","doi":"10.1115/FEDSM2018-83057","DOIUrl":null,"url":null,"abstract":"This paper presents experimental unsteady pressure measurements gathered on a single stage axial compressor during pre-stall and transition to stall operations. The aim of this study is to analyze the transition from a stable operating point to the fully developed rotating stall regime, and more specifically, the effect of the throttling process on the development of the instabilities. To do so, experiments have been repeated leading the compressor to stall operations with various throttling speed.\n On one hand, this paper analyses the effect of the throttling speed on the dynamic of the instability development from the first detection of spike type precursors to completely developed rotating stall.\n On the other hand, a stall warning signal based on the correlation of the instantaneous pressure signal with a reference pressure signal is built. The influence of the location of the pressure transducer used for the warning signal is first analyzed. Then an analysis of the effect of the throttling process on the time between the warning signal and the effective stall development is proposed.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detailed Pressure Measurements During the Transition to Rotating Stall in an Axial Compressor: Influence of the Throttling Process\",\"authors\":\"G. Margalida, A. Dazin, P. Joseph, O. Roussette\",\"doi\":\"10.1115/FEDSM2018-83057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents experimental unsteady pressure measurements gathered on a single stage axial compressor during pre-stall and transition to stall operations. The aim of this study is to analyze the transition from a stable operating point to the fully developed rotating stall regime, and more specifically, the effect of the throttling process on the development of the instabilities. To do so, experiments have been repeated leading the compressor to stall operations with various throttling speed.\\n On one hand, this paper analyses the effect of the throttling speed on the dynamic of the instability development from the first detection of spike type precursors to completely developed rotating stall.\\n On the other hand, a stall warning signal based on the correlation of the instantaneous pressure signal with a reference pressure signal is built. The influence of the location of the pressure transducer used for the warning signal is first analyzed. Then an analysis of the effect of the throttling process on the time between the warning signal and the effective stall development is proposed.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detailed Pressure Measurements During the Transition to Rotating Stall in an Axial Compressor: Influence of the Throttling Process
This paper presents experimental unsteady pressure measurements gathered on a single stage axial compressor during pre-stall and transition to stall operations. The aim of this study is to analyze the transition from a stable operating point to the fully developed rotating stall regime, and more specifically, the effect of the throttling process on the development of the instabilities. To do so, experiments have been repeated leading the compressor to stall operations with various throttling speed.
On one hand, this paper analyses the effect of the throttling speed on the dynamic of the instability development from the first detection of spike type precursors to completely developed rotating stall.
On the other hand, a stall warning signal based on the correlation of the instantaneous pressure signal with a reference pressure signal is built. The influence of the location of the pressure transducer used for the warning signal is first analyzed. Then an analysis of the effect of the throttling process on the time between the warning signal and the effective stall development is proposed.